import gradio as gr import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split from sklearn.multioutput import MultiOutputRegressor import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt def compare(max_depth,n_estimators): rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(600, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y += 0.5 - rng.rand(*y.shape) X_train, X_test, y_train, y_test = train_test_split( X, y, train_size=400, test_size=200, random_state=4 ) regr_multirf = MultiOutputRegressor( RandomForestRegressor(n_estimators=n_estimators, max_depth=max_depth, random_state=0) ) regr_multirf.fit(X_train, y_train) regr_rf = RandomForestRegressor(n_estimators=n_estimators, max_depth=max_depth, random_state=2) regr_rf.fit(X_train, y_train) # Predict on new data y_multirf = regr_multirf.predict(X_test) y_rf = regr_rf.predict(X_test) # Plot the results fig, ax = plt.subplots() s = 50 a = 0.4 ax.scatter( y_test[:, 0], y_test[:, 1], edgecolor="k", c="navy", s=s, marker="s", alpha=a, label="Data", ) ax.scatter( y_multirf[:, 0], y_multirf[:, 1], edgecolor="k", c="cornflowerblue", s=s, alpha=a, label="Multi RF score=%.2f" % regr_multirf.score(X_test, y_test), ) ax.scatter( y_rf[:, 0], y_rf[:, 1], edgecolor="k", c="c", s=s, marker="^", alpha=a, label="RF score=%.2f" % regr_rf.score(X_test, y_test), ) ax.set_xlim([-6, 6]) ax.set_ylim([-6, 6]) ax.set_xlabel("target 1") ax.set_ylabel("target 2") ax.set_title("Comparing random forests and the multi-output meta estimator") ax.legend() return fig title = "Comparing random forests and the multi-output meta estimator" with gr.Blocks(title=title) as demo: gr.Markdown(f"## {title}") gr.Markdown("This app demonstrates random forests and the multi-output meta estimator comparison") max_depth = gr.Slider(minimum=10, maximum=50, step=1, label = "Maximum Depth") n_estimators = gr.Slider(minimum=50, maximum=300, step=1, label = "Number of Estimators") plot = gr.Plot(label=title) n_estimators.change(fn=compare, inputs=[max_depth,n_estimators], outputs=[plot]) max_depth.change(fn=compare, inputs=[max_depth,n_estimators], outputs=[plot]) demo.launch()