File size: 4,752 Bytes
c07df4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from itertools import combinations

plt.rcParams['figure.dpi'] = 100

from sklearn.datasets import load_iris

from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import VotingClassifier

import gradio as gr

#==================================================
C1, C2, C3 = '#ff0000', '#ffff00', '#0000ff'
CMAP = ListedColormap([C1, C2, C3])
GRANULARITY = 0.05
SEED = 1

FEATURE_NAMES = ["Sepal Length", "Sepal Width", "Petal Length", "Petal Width"]
TARGET_NAMES = ["Setosa", "Versicolour", "Virginica"]
MODEL_NAMES = ['DecisionTreeClassifier', 'KNeighborsClassifier', 'SupportVectorClassifier', 'VotingClassifier']

iris = load_iris()
#==================================================
def get_decision_surface(X, y, model):
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xrange = np.arange(x_min, x_max, GRANULARITY)
    yrange = np.arange(y_min, y_max, GRANULARITY)
    xx, yy = np.meshgrid(xrange, yrange)

    Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)

    return xx, yy, Z

def create_plot(feature_string, max_depth, n_neighbors, gamma, weight1, weight2, weight3):
    
    np.random.seed(SEED)
    
    feature_list = feature_string.split(',')
    feature_list = [s.strip() for s in feature_list]
    idx_x = FEATURE_NAMES.index(feature_list[0])
    idx_y = FEATURE_NAMES.index(feature_list[1])

    X = iris.data[:, [idx_x, idx_y]]
    y = iris.target

    rnd_idx = np.random.permutation(X.shape[0])
    X = X[rnd_idx]
    y = y[rnd_idx]

    clf1 = DecisionTreeClassifier(max_depth=max_depth)
    clf2 = KNeighborsClassifier(n_neighbors=n_neighbors, n_jobs=-1)
    clf3 = SVC(gamma=gamma, kernel="rbf", probability=True)
    eclf = VotingClassifier(
        estimators=[("dt", clf1), ("knn", clf2), ("svc", clf3)],
        voting="soft",
        weights=[weight1, weight2, weight3],
    )

    clf1.fit(X, y)
    clf2.fit(X, y)
    clf3.fit(X, y)
    eclf.fit(X, y)

    fig = plt.figure(figsize=(12, 12))

    for i, clf in enumerate([clf1, clf2, clf3, eclf]):
        xx, yy, Z = get_decision_surface(X, y, clf)

        ax = fig.add_subplot(2, 2, i+1)
        ax.contourf(xx, yy, Z, cmap=CMAP, alpha=0.65)

        for j, label in enumerate(TARGET_NAMES):
            X_label = X[y==j,:]
            y_label = y[y==j]
            ax.scatter(X_label[:, 0], X_label[:, 1], c=[[C1], [C2], [C3]][j]*len(y_label), edgecolor='k', s=40, label=label)
        
        ax.set_xlabel(feature_list[0]); ax.set_ylabel(feature_list[1])
        ax.legend()
        ax.set_title(f'{MODEL_NAMES[i]}')
    
    return fig

info = '''
# Voting Classifier Decision Surface

This app plots the decision surface of four classifiers on two selected features of the Iris dataset:
- DecisionTreeClassifier.
- KNeighborsClassifier.
- SupportVectorClassifier.
- A VotingClassifier from all of the above.

Use the controls below to tune the parameters of the classifiers and the weights of each of them in the soft voting classifier and click submit. The more weight you assign to a classifier, the more importance will be assigned to its predictions compared to the other classifiers in the vote.
'''

with gr.Blocks() as demo:
    gr.Markdown(info)

    selections = combinations(FEATURE_NAMES, 2)
    selections = [f'{s[0]}, {s[1]}' for s in selections]

    dd = gr.Dropdown(selections, value=selections[0], interactive=True, label="Input features")

    with gr.Row():
        with gr.Column():
            slider_max_depth = gr.Slider(1, 50, value=4, step=1, label='max_depth (for DecisionTreeClassifier)')
            slider_n_neighbors = gr.Slider(1, 20, value=7, step=1, label='n_neighbors (for KNeighborsClassifier)')
            slider_gamma = gr.Slider(0, 10, value=0.1, step=0.1, label='gamma (for SVC)')

        with gr.Column():
            slider_w1 = gr.Slider(0, 10, value=2, step=0.1, label='DecisionTreeClassifier weight')
            slider_w2 = gr.Slider(0, 10, value=1, step=0.1, label='KNeighborsClassifier weight')
            slider_w3 = gr.Slider(0, 10, value=2, step=0.1, label='SVC weight')
    
    
    btn = gr.Button(value='Submit')
    
    plot = gr.Plot(label='Decision Surfaces')

    btn.click(create_plot, inputs=[dd, slider_max_depth, slider_n_neighbors, slider_gamma, slider_w1, slider_w2, slider_w3], outputs=[plot])

    demo.load(create_plot, inputs=[dd, slider_max_depth, slider_n_neighbors, slider_gamma, slider_w1, slider_w2, slider_w3], outputs=[plot])


demo.launch()
#==================================================