Stable-Makeup-unofficial / diffusers /pipelines /stable_diffusion /pipeline_stable_diffusion_pix2pix_zero.py
sky24h's picture
init commit
1d24639
# Copyright 2023 Pix2Pix Zero Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from transformers import (
BlipForConditionalGeneration,
BlipProcessor,
CLIPImageProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from ...image_processor import PipelineImageInput, VaeImageProcessor
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin
from ...models import AutoencoderKL, UNet2DConditionModel
from ...models.attention_processor import Attention
from ...models.lora import adjust_lora_scale_text_encoder
from ...schedulers import DDIMScheduler, DDPMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler
from ...schedulers.scheduling_ddim_inverse import DDIMInverseScheduler
from ...utils import (
PIL_INTERPOLATION,
USE_PEFT_BACKEND,
BaseOutput,
deprecate,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from ...utils.torch_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline
from . import StableDiffusionPipelineOutput
from .safety_checker import StableDiffusionSafetyChecker
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class Pix2PixInversionPipelineOutput(BaseOutput, TextualInversionLoaderMixin):
"""
Output class for Stable Diffusion pipelines.
Args:
latents (`torch.FloatTensor`)
inverted latents tensor
images (`List[PIL.Image.Image]` or `np.ndarray`)
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
"""
latents: torch.FloatTensor
images: Union[List[PIL.Image.Image], np.ndarray]
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import requests
>>> import torch
>>> from diffusers import DDIMScheduler, StableDiffusionPix2PixZeroPipeline
>>> def download(embedding_url, local_filepath):
... r = requests.get(embedding_url)
... with open(local_filepath, "wb") as f:
... f.write(r.content)
>>> model_ckpt = "CompVis/stable-diffusion-v1-4"
>>> pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16)
>>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
>>> pipeline.to("cuda")
>>> prompt = "a high resolution painting of a cat in the style of van gough"
>>> source_emb_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/cat.pt"
>>> target_emb_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/dog.pt"
>>> for url in [source_emb_url, target_emb_url]:
... download(url, url.split("/")[-1])
>>> src_embeds = torch.load(source_emb_url.split("/")[-1])
>>> target_embeds = torch.load(target_emb_url.split("/")[-1])
>>> images = pipeline(
... prompt,
... source_embeds=src_embeds,
... target_embeds=target_embeds,
... num_inference_steps=50,
... cross_attention_guidance_amount=0.15,
... ).images
>>> images[0].save("edited_image_dog.png")
```
"""
EXAMPLE_INVERT_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from transformers import BlipForConditionalGeneration, BlipProcessor
>>> from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionPix2PixZeroPipeline
>>> import requests
>>> from PIL import Image
>>> captioner_id = "Salesforce/blip-image-captioning-base"
>>> processor = BlipProcessor.from_pretrained(captioner_id)
>>> model = BlipForConditionalGeneration.from_pretrained(
... captioner_id, torch_dtype=torch.float16, low_cpu_mem_usage=True
... )
>>> sd_model_ckpt = "CompVis/stable-diffusion-v1-4"
>>> pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(
... sd_model_ckpt,
... caption_generator=model,
... caption_processor=processor,
... torch_dtype=torch.float16,
... safety_checker=None,
... )
>>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
>>> pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config)
>>> pipeline.enable_model_cpu_offload()
>>> img_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/test_images/cats/cat_6.png"
>>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB").resize((512, 512))
>>> # generate caption
>>> caption = pipeline.generate_caption(raw_image)
>>> # "a photography of a cat with flowers and dai dai daie - daie - daie kasaii"
>>> inv_latents = pipeline.invert(caption, image=raw_image).latents
>>> # we need to generate source and target embeds
>>> source_prompts = ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"]
>>> target_prompts = ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"]
>>> source_embeds = pipeline.get_embeds(source_prompts)
>>> target_embeds = pipeline.get_embeds(target_prompts)
>>> # the latents can then be used to edit a real image
>>> # when using Stable Diffusion 2 or other models that use v-prediction
>>> # set `cross_attention_guidance_amount` to 0.01 or less to avoid input latent gradient explosion
>>> image = pipeline(
... caption,
... source_embeds=source_embeds,
... target_embeds=target_embeds,
... num_inference_steps=50,
... cross_attention_guidance_amount=0.15,
... generator=generator,
... latents=inv_latents,
... negative_prompt=caption,
... ).images[0]
>>> image.save("edited_image.png")
```
"""
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
def preprocess(image):
deprecation_message = "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead"
deprecate("preprocess", "1.0.0", deprecation_message, standard_warn=False)
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
w, h = image[0].size
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
def prepare_unet(unet: UNet2DConditionModel):
"""Modifies the UNet (`unet`) to perform Pix2Pix Zero optimizations."""
pix2pix_zero_attn_procs = {}
for name in unet.attn_processors.keys():
module_name = name.replace(".processor", "")
module = unet.get_submodule(module_name)
if "attn2" in name:
pix2pix_zero_attn_procs[name] = Pix2PixZeroAttnProcessor(is_pix2pix_zero=True)
module.requires_grad_(True)
else:
pix2pix_zero_attn_procs[name] = Pix2PixZeroAttnProcessor(is_pix2pix_zero=False)
module.requires_grad_(False)
unet.set_attn_processor(pix2pix_zero_attn_procs)
return unet
class Pix2PixZeroL2Loss:
def __init__(self):
self.loss = 0.0
def compute_loss(self, predictions, targets):
self.loss += ((predictions - targets) ** 2).sum((1, 2)).mean(0)
class Pix2PixZeroAttnProcessor:
"""An attention processor class to store the attention weights.
In Pix2Pix Zero, it happens during computations in the cross-attention blocks."""
def __init__(self, is_pix2pix_zero=False):
self.is_pix2pix_zero = is_pix2pix_zero
if self.is_pix2pix_zero:
self.reference_cross_attn_map = {}
def __call__(
self,
attn: Attention,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
timestep=None,
loss=None,
):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
if self.is_pix2pix_zero and timestep is not None:
# new bookkeeping to save the attention weights.
if loss is None:
self.reference_cross_attn_map[timestep.item()] = attention_probs.detach().cpu()
# compute loss
elif loss is not None:
prev_attn_probs = self.reference_cross_attn_map.pop(timestep.item())
loss.compute_loss(attention_probs, prev_attn_probs.to(attention_probs.device))
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline):
r"""
Pipeline for pixel-levl image editing using Pix2Pix Zero. Based on Stable Diffusion.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`], or [`DDPMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
feature_extractor ([`CLIPImageProcessor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
requires_safety_checker (bool):
Whether the pipeline requires a safety checker. We recommend setting it to True if you're using the
pipeline publicly.
"""
model_cpu_offload_seq = "text_encoder->unet->vae"
_optional_components = [
"safety_checker",
"feature_extractor",
"caption_generator",
"caption_processor",
"inverse_scheduler",
]
_exclude_from_cpu_offload = ["safety_checker"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDPMScheduler, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler],
feature_extractor: CLIPImageProcessor,
safety_checker: StableDiffusionSafetyChecker,
inverse_scheduler: DDIMInverseScheduler,
caption_generator: BlipForConditionalGeneration,
caption_processor: BlipProcessor,
requires_safety_checker: bool = True,
):
super().__init__()
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
caption_processor=caption_processor,
caption_generator=caption_generator,
inverse_scheduler=inverse_scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.register_to_config(requires_safety_checker=requires_safety_checker)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
**kwargs,
):
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
prompt_embeds_tuple = self.encode_prompt(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=lora_scale,
**kwargs,
)
# concatenate for backwards comp
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
return prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
def encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
clip_skip: Optional[int] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if not USE_PEFT_BACKEND:
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
else:
scale_lora_layers(self.text_encoder, lora_scale)
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
if clip_skip is None:
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
prompt_embeds = prompt_embeds[0]
else:
prompt_embeds = self.text_encoder(
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
)
# Access the `hidden_states` first, that contains a tuple of
# all the hidden states from the encoder layers. Then index into
# the tuple to access the hidden states from the desired layer.
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
# We also need to apply the final LayerNorm here to not mess with the
# representations. The `last_hidden_states` that we typically use for
# obtaining the final prompt representations passes through the LayerNorm
# layer.
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
return prompt_embeds, negative_prompt_embeds
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
def run_safety_checker(self, image, device, dtype):
if self.safety_checker is None:
has_nsfw_concept = None
else:
if torch.is_tensor(image):
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
else:
feature_extractor_input = self.image_processor.numpy_to_pil(image)
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
)
return image, has_nsfw_concept
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
def decode_latents(self, latents):
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents, return_dict=False)[0]
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(
self,
prompt,
source_embeds,
target_embeds,
callback_steps,
prompt_embeds=None,
):
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if source_embeds is None and target_embeds is None:
raise ValueError("`source_embeds` and `target_embeds` cannot be undefined.")
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
@torch.no_grad()
def generate_caption(self, images):
"""Generates caption for a given image."""
text = "a photography of"
prev_device = self.caption_generator.device
device = self._execution_device
inputs = self.caption_processor(images, text, return_tensors="pt").to(
device=device, dtype=self.caption_generator.dtype
)
self.caption_generator.to(device)
outputs = self.caption_generator.generate(**inputs, max_new_tokens=128)
# offload caption generator
self.caption_generator.to(prev_device)
caption = self.caption_processor.batch_decode(outputs, skip_special_tokens=True)[0]
return caption
def construct_direction(self, embs_source: torch.Tensor, embs_target: torch.Tensor):
"""Constructs the edit direction to steer the image generation process semantically."""
return (embs_target.mean(0) - embs_source.mean(0)).unsqueeze(0)
@torch.no_grad()
def get_embeds(self, prompt: List[str], batch_size: int = 16) -> torch.FloatTensor:
num_prompts = len(prompt)
embeds = []
for i in range(0, num_prompts, batch_size):
prompt_slice = prompt[i : i + batch_size]
input_ids = self.tokenizer(
prompt_slice,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
).input_ids
input_ids = input_ids.to(self.text_encoder.device)
embeds.append(self.text_encoder(input_ids)[0])
return torch.cat(embeds, dim=0).mean(0)[None]
def prepare_image_latents(self, image, batch_size, dtype, device, generator=None):
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
image = image.to(device=device, dtype=dtype)
if image.shape[1] == 4:
latents = image
else:
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if isinstance(generator, list):
latents = [
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
]
latents = torch.cat(latents, dim=0)
else:
latents = self.vae.encode(image).latent_dist.sample(generator)
latents = self.vae.config.scaling_factor * latents
if batch_size != latents.shape[0]:
if batch_size % latents.shape[0] == 0:
# expand image_latents for batch_size
deprecation_message = (
f"You have passed {batch_size} text prompts (`prompt`), but only {latents.shape[0]} initial"
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
" your script to pass as many initial images as text prompts to suppress this warning."
)
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
additional_latents_per_image = batch_size // latents.shape[0]
latents = torch.cat([latents] * additional_latents_per_image, dim=0)
else:
raise ValueError(
f"Cannot duplicate `image` of batch size {latents.shape[0]} to {batch_size} text prompts."
)
else:
latents = torch.cat([latents], dim=0)
return latents
def get_epsilon(self, model_output: torch.Tensor, sample: torch.Tensor, timestep: int):
pred_type = self.inverse_scheduler.config.prediction_type
alpha_prod_t = self.inverse_scheduler.alphas_cumprod[timestep]
beta_prod_t = 1 - alpha_prod_t
if pred_type == "epsilon":
return model_output
elif pred_type == "sample":
return (sample - alpha_prod_t ** (0.5) * model_output) / beta_prod_t ** (0.5)
elif pred_type == "v_prediction":
return (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
f"prediction_type given as {pred_type} must be one of `epsilon`, `sample`, or `v_prediction`"
)
def auto_corr_loss(self, hidden_states, generator=None):
reg_loss = 0.0
for i in range(hidden_states.shape[0]):
for j in range(hidden_states.shape[1]):
noise = hidden_states[i : i + 1, j : j + 1, :, :]
while True:
roll_amount = torch.randint(noise.shape[2] // 2, (1,), generator=generator).item()
reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=2)).mean() ** 2
reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=3)).mean() ** 2
if noise.shape[2] <= 8:
break
noise = F.avg_pool2d(noise, kernel_size=2)
return reg_loss
def kl_divergence(self, hidden_states):
mean = hidden_states.mean()
var = hidden_states.var()
return var + mean**2 - 1 - torch.log(var + 1e-7)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
source_embeds: torch.Tensor = None,
target_embeds: torch.Tensor = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
cross_attention_guidance_amount: float = 0.1,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
source_embeds (`torch.Tensor`):
Source concept embeddings. Generation of the embeddings as per the [original
paper](https://arxiv.org/abs/2302.03027). Used in discovering the edit direction.
target_embeds (`torch.Tensor`):
Target concept embeddings. Generation of the embeddings as per the [original
paper](https://arxiv.org/abs/2302.03027). Used in discovering the edit direction.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
cross_attention_guidance_amount (`float`, defaults to 0.1):
Amount of guidance needed from the reference cross-attention maps.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 0. Define the spatial resolutions.
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
source_embeds,
target_embeds,
callback_steps,
prompt_embeds,
)
# 3. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if cross_attention_kwargs is None:
cross_attention_kwargs = {}
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
clip_skip=clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Generate the inverted noise from the input image or any other image
# generated from the input prompt.
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
latents_init = latents.clone()
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 8. Rejig the UNet so that we can obtain the cross-attenion maps and
# use them for guiding the subsequent image generation.
self.unet = prepare_unet(self.unet)
# 7. Denoising loop where we obtain the cross-attention maps.
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs={"timestep": t},
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# 8. Compute the edit directions.
edit_direction = self.construct_direction(source_embeds, target_embeds).to(prompt_embeds.device)
# 9. Edit the prompt embeddings as per the edit directions discovered.
prompt_embeds_edit = prompt_embeds.clone()
prompt_embeds_edit[1:2] += edit_direction
# 10. Second denoising loop to generate the edited image.
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
latents = latents_init
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# we want to learn the latent such that it steers the generation
# process towards the edited direction, so make the make initial
# noise learnable
x_in = latent_model_input.detach().clone()
x_in.requires_grad = True
# optimizer
opt = torch.optim.SGD([x_in], lr=cross_attention_guidance_amount)
with torch.enable_grad():
# initialize loss
loss = Pix2PixZeroL2Loss()
# predict the noise residual
noise_pred = self.unet(
x_in,
t,
encoder_hidden_states=prompt_embeds_edit.detach(),
cross_attention_kwargs={"timestep": t, "loss": loss},
).sample
loss.loss.backward(retain_graph=False)
opt.step()
# recompute the noise
noise_pred = self.unet(
x_in.detach(),
t,
encoder_hidden_states=prompt_embeds_edit,
cross_attention_kwargs={"timestep": None},
).sample
latents = x_in.detach().chunk(2)[0]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if not output_type == "latent":
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
@torch.no_grad()
@replace_example_docstring(EXAMPLE_INVERT_DOC_STRING)
def invert(
self,
prompt: Optional[str] = None,
image: PipelineImageInput = None,
num_inference_steps: int = 50,
guidance_scale: float = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
cross_attention_guidance_amount: float = 0.1,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
lambda_auto_corr: float = 20.0,
lambda_kl: float = 20.0,
num_reg_steps: int = 5,
num_auto_corr_rolls: int = 5,
):
r"""
Function used to generate inverted latents given a prompt and image.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
image (`torch.FloatTensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, or tensor representing an image batch which will be used for conditioning. Can also accept
image latents as `image`, if passing latents directly, it will not be encoded again.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 1):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
to make generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
cross_attention_guidance_amount (`float`, defaults to 0.1):
Amount of guidance needed from the reference cross-attention maps.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
lambda_auto_corr (`float`, *optional*, defaults to 20.0):
Lambda parameter to control auto correction
lambda_kl (`float`, *optional*, defaults to 20.0):
Lambda parameter to control Kullback–Leibler divergence output
num_reg_steps (`int`, *optional*, defaults to 5):
Number of regularization loss steps
num_auto_corr_rolls (`int`, *optional*, defaults to 5):
Number of auto correction roll steps
Examples:
Returns:
[`~pipelines.stable_diffusion.pipeline_stable_diffusion_pix2pix_zero.Pix2PixInversionPipelineOutput`] or
`tuple`:
[`~pipelines.stable_diffusion.pipeline_stable_diffusion_pix2pix_zero.Pix2PixInversionPipelineOutput`] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is the inverted
latents tensor and then second is the corresponding decoded image.
"""
# 1. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if cross_attention_kwargs is None:
cross_attention_kwargs = {}
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Preprocess image
image = self.image_processor.preprocess(image)
# 4. Prepare latent variables
latents = self.prepare_image_latents(image, batch_size, self.vae.dtype, device, generator)
# 5. Encode input prompt
num_images_per_prompt = 1
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
prompt_embeds=prompt_embeds,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
# 4. Prepare timesteps
self.inverse_scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.inverse_scheduler.timesteps
# 6. Rejig the UNet so that we can obtain the cross-attenion maps and
# use them for guiding the subsequent image generation.
self.unet = prepare_unet(self.unet)
# 7. Denoising loop where we obtain the cross-attention maps.
num_warmup_steps = len(timesteps) - num_inference_steps * self.inverse_scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
cross_attention_kwargs={"timestep": t},
).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# regularization of the noise prediction
with torch.enable_grad():
for _ in range(num_reg_steps):
if lambda_auto_corr > 0:
for _ in range(num_auto_corr_rolls):
var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True)
# Derive epsilon from model output before regularizing to IID standard normal
var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t)
l_ac = self.auto_corr_loss(var_epsilon, generator=generator)
l_ac.backward()
grad = var.grad.detach() / num_auto_corr_rolls
noise_pred = noise_pred - lambda_auto_corr * grad
if lambda_kl > 0:
var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True)
# Derive epsilon from model output before regularizing to IID standard normal
var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t)
l_kld = self.kl_divergence(var_epsilon)
l_kld.backward()
grad = var.grad.detach()
noise_pred = noise_pred - lambda_kl * grad
noise_pred = noise_pred.detach()
# compute the previous noisy sample x_t -> x_t-1
latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample
# call the callback, if provided
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
inverted_latents = latents.detach().clone()
# 8. Post-processing
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (inverted_latents, image)
return Pix2PixInversionPipelineOutput(latents=inverted_latents, images=image)