Spaces:
Running
on
Zero
Running
on
Zero
Stable-Makeup-unofficial
/
diffusers
/pipelines
/stable_diffusion
/pipeline_stable_diffusion_pix2pix_zero.py
# Copyright 2023 Pix2Pix Zero Authors and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from dataclasses import dataclass | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn.functional as F | |
from transformers import ( | |
BlipForConditionalGeneration, | |
BlipProcessor, | |
CLIPImageProcessor, | |
CLIPTextModel, | |
CLIPTokenizer, | |
) | |
from ...image_processor import PipelineImageInput, VaeImageProcessor | |
from ...loaders import LoraLoaderMixin, TextualInversionLoaderMixin | |
from ...models import AutoencoderKL, UNet2DConditionModel | |
from ...models.attention_processor import Attention | |
from ...models.lora import adjust_lora_scale_text_encoder | |
from ...schedulers import DDIMScheduler, DDPMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler | |
from ...schedulers.scheduling_ddim_inverse import DDIMInverseScheduler | |
from ...utils import ( | |
PIL_INTERPOLATION, | |
USE_PEFT_BACKEND, | |
BaseOutput, | |
deprecate, | |
logging, | |
replace_example_docstring, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from ...utils.torch_utils import randn_tensor | |
from ..pipeline_utils import DiffusionPipeline | |
from . import StableDiffusionPipelineOutput | |
from .safety_checker import StableDiffusionSafetyChecker | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
class Pix2PixInversionPipelineOutput(BaseOutput, TextualInversionLoaderMixin): | |
""" | |
Output class for Stable Diffusion pipelines. | |
Args: | |
latents (`torch.FloatTensor`) | |
inverted latents tensor | |
images (`List[PIL.Image.Image]` or `np.ndarray`) | |
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, | |
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. | |
""" | |
latents: torch.FloatTensor | |
images: Union[List[PIL.Image.Image], np.ndarray] | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import requests | |
>>> import torch | |
>>> from diffusers import DDIMScheduler, StableDiffusionPix2PixZeroPipeline | |
>>> def download(embedding_url, local_filepath): | |
... r = requests.get(embedding_url) | |
... with open(local_filepath, "wb") as f: | |
... f.write(r.content) | |
>>> model_ckpt = "CompVis/stable-diffusion-v1-4" | |
>>> pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16) | |
>>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) | |
>>> pipeline.to("cuda") | |
>>> prompt = "a high resolution painting of a cat in the style of van gough" | |
>>> source_emb_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/cat.pt" | |
>>> target_emb_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/dog.pt" | |
>>> for url in [source_emb_url, target_emb_url]: | |
... download(url, url.split("/")[-1]) | |
>>> src_embeds = torch.load(source_emb_url.split("/")[-1]) | |
>>> target_embeds = torch.load(target_emb_url.split("/")[-1]) | |
>>> images = pipeline( | |
... prompt, | |
... source_embeds=src_embeds, | |
... target_embeds=target_embeds, | |
... num_inference_steps=50, | |
... cross_attention_guidance_amount=0.15, | |
... ).images | |
>>> images[0].save("edited_image_dog.png") | |
``` | |
""" | |
EXAMPLE_INVERT_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from transformers import BlipForConditionalGeneration, BlipProcessor | |
>>> from diffusers import DDIMScheduler, DDIMInverseScheduler, StableDiffusionPix2PixZeroPipeline | |
>>> import requests | |
>>> from PIL import Image | |
>>> captioner_id = "Salesforce/blip-image-captioning-base" | |
>>> processor = BlipProcessor.from_pretrained(captioner_id) | |
>>> model = BlipForConditionalGeneration.from_pretrained( | |
... captioner_id, torch_dtype=torch.float16, low_cpu_mem_usage=True | |
... ) | |
>>> sd_model_ckpt = "CompVis/stable-diffusion-v1-4" | |
>>> pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained( | |
... sd_model_ckpt, | |
... caption_generator=model, | |
... caption_processor=processor, | |
... torch_dtype=torch.float16, | |
... safety_checker=None, | |
... ) | |
>>> pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) | |
>>> pipeline.inverse_scheduler = DDIMInverseScheduler.from_config(pipeline.scheduler.config) | |
>>> pipeline.enable_model_cpu_offload() | |
>>> img_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/test_images/cats/cat_6.png" | |
>>> raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB").resize((512, 512)) | |
>>> # generate caption | |
>>> caption = pipeline.generate_caption(raw_image) | |
>>> # "a photography of a cat with flowers and dai dai daie - daie - daie kasaii" | |
>>> inv_latents = pipeline.invert(caption, image=raw_image).latents | |
>>> # we need to generate source and target embeds | |
>>> source_prompts = ["a cat sitting on the street", "a cat playing in the field", "a face of a cat"] | |
>>> target_prompts = ["a dog sitting on the street", "a dog playing in the field", "a face of a dog"] | |
>>> source_embeds = pipeline.get_embeds(source_prompts) | |
>>> target_embeds = pipeline.get_embeds(target_prompts) | |
>>> # the latents can then be used to edit a real image | |
>>> # when using Stable Diffusion 2 or other models that use v-prediction | |
>>> # set `cross_attention_guidance_amount` to 0.01 or less to avoid input latent gradient explosion | |
>>> image = pipeline( | |
... caption, | |
... source_embeds=source_embeds, | |
... target_embeds=target_embeds, | |
... num_inference_steps=50, | |
... cross_attention_guidance_amount=0.15, | |
... generator=generator, | |
... latents=inv_latents, | |
... negative_prompt=caption, | |
... ).images[0] | |
>>> image.save("edited_image.png") | |
``` | |
""" | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess | |
def preprocess(image): | |
deprecation_message = "The preprocess method is deprecated and will be removed in diffusers 1.0.0. Please use VaeImageProcessor.preprocess(...) instead" | |
deprecate("preprocess", "1.0.0", deprecation_message, standard_warn=False) | |
if isinstance(image, torch.Tensor): | |
return image | |
elif isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
w, h = image[0].size | |
w, h = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 | |
image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = image.transpose(0, 3, 1, 2) | |
image = 2.0 * image - 1.0 | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.cat(image, dim=0) | |
return image | |
def prepare_unet(unet: UNet2DConditionModel): | |
"""Modifies the UNet (`unet`) to perform Pix2Pix Zero optimizations.""" | |
pix2pix_zero_attn_procs = {} | |
for name in unet.attn_processors.keys(): | |
module_name = name.replace(".processor", "") | |
module = unet.get_submodule(module_name) | |
if "attn2" in name: | |
pix2pix_zero_attn_procs[name] = Pix2PixZeroAttnProcessor(is_pix2pix_zero=True) | |
module.requires_grad_(True) | |
else: | |
pix2pix_zero_attn_procs[name] = Pix2PixZeroAttnProcessor(is_pix2pix_zero=False) | |
module.requires_grad_(False) | |
unet.set_attn_processor(pix2pix_zero_attn_procs) | |
return unet | |
class Pix2PixZeroL2Loss: | |
def __init__(self): | |
self.loss = 0.0 | |
def compute_loss(self, predictions, targets): | |
self.loss += ((predictions - targets) ** 2).sum((1, 2)).mean(0) | |
class Pix2PixZeroAttnProcessor: | |
"""An attention processor class to store the attention weights. | |
In Pix2Pix Zero, it happens during computations in the cross-attention blocks.""" | |
def __init__(self, is_pix2pix_zero=False): | |
self.is_pix2pix_zero = is_pix2pix_zero | |
if self.is_pix2pix_zero: | |
self.reference_cross_attn_map = {} | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
timestep=None, | |
loss=None, | |
): | |
batch_size, sequence_length, _ = hidden_states.shape | |
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
if self.is_pix2pix_zero and timestep is not None: | |
# new bookkeeping to save the attention weights. | |
if loss is None: | |
self.reference_cross_attn_map[timestep.item()] = attention_probs.detach().cpu() | |
# compute loss | |
elif loss is not None: | |
prev_attn_probs = self.reference_cross_attn_map.pop(timestep.item()) | |
loss.compute_loss(attention_probs, prev_attn_probs.to(attention_probs.device)) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
return hidden_states | |
class StableDiffusionPix2PixZeroPipeline(DiffusionPipeline): | |
r""" | |
Pipeline for pixel-levl image editing using Pix2Pix Zero. Based on Stable Diffusion. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], [`EulerAncestralDiscreteScheduler`], or [`DDPMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
feature_extractor ([`CLIPImageProcessor`]): | |
Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
requires_safety_checker (bool): | |
Whether the pipeline requires a safety checker. We recommend setting it to True if you're using the | |
pipeline publicly. | |
""" | |
model_cpu_offload_seq = "text_encoder->unet->vae" | |
_optional_components = [ | |
"safety_checker", | |
"feature_extractor", | |
"caption_generator", | |
"caption_processor", | |
"inverse_scheduler", | |
] | |
_exclude_from_cpu_offload = ["safety_checker"] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: Union[DDPMScheduler, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler], | |
feature_extractor: CLIPImageProcessor, | |
safety_checker: StableDiffusionSafetyChecker, | |
inverse_scheduler: DDIMInverseScheduler, | |
caption_generator: BlipForConditionalGeneration, | |
caption_processor: BlipProcessor, | |
requires_safety_checker: bool = True, | |
): | |
super().__init__() | |
if safety_checker is None and requires_safety_checker: | |
logger.warning( | |
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
" results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
) | |
if safety_checker is not None and feature_extractor is None: | |
raise ValueError( | |
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
) | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
safety_checker=safety_checker, | |
feature_extractor=feature_extractor, | |
caption_processor=caption_processor, | |
caption_generator=caption_generator, | |
inverse_scheduler=inverse_scheduler, | |
) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.register_to_config(requires_safety_checker=requires_safety_checker) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
**kwargs, | |
): | |
deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." | |
deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) | |
prompt_embeds_tuple = self.encode_prompt( | |
prompt=prompt, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=lora_scale, | |
**kwargs, | |
) | |
# concatenate for backwards comp | |
prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) | |
return prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt | |
def encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
lora_scale (`float`, *optional*): | |
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if prompt_embeds is None: | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
text_inputs = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = self.tokenizer.batch_decode( | |
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = text_inputs.attention_mask.to(device) | |
else: | |
attention_mask = None | |
if clip_skip is None: | |
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
prompt_embeds = prompt_embeds[0] | |
else: | |
prompt_embeds = self.text_encoder( | |
text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
) | |
# Access the `hidden_states` first, that contains a tuple of | |
# all the hidden states from the encoder layers. Then index into | |
# the tuple to access the hidden states from the desired layer. | |
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
# We also need to apply the final LayerNorm here to not mess with the | |
# representations. The `last_hidden_states` that we typically use for | |
# obtaining the final prompt representations passes through the LayerNorm | |
# layer. | |
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
if self.text_encoder is not None: | |
prompt_embeds_dtype = self.text_encoder.dtype | |
elif self.unet is not None: | |
prompt_embeds_dtype = self.unet.dtype | |
else: | |
prompt_embeds_dtype = prompt_embeds.dtype | |
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
uncond_tokens: List[str] | |
if negative_prompt is None: | |
uncond_tokens = [""] * batch_size | |
elif prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif isinstance(negative_prompt, str): | |
uncond_tokens = [negative_prompt] | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = negative_prompt | |
# textual inversion: procecss multi-vector tokens if necessary | |
if isinstance(self, TextualInversionLoaderMixin): | |
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = self.tokenizer( | |
uncond_tokens, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
attention_mask = uncond_input.attention_mask.to(device) | |
else: | |
attention_mask = None | |
negative_prompt_embeds = self.text_encoder( | |
uncond_input.input_ids.to(device), | |
attention_mask=attention_mask, | |
) | |
negative_prompt_embeds = negative_prompt_embeds[0] | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
return prompt_embeds, negative_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker | |
def run_safety_checker(self, image, device, dtype): | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
else: | |
if torch.is_tensor(image): | |
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") | |
else: | |
feature_extractor_input = self.image_processor.numpy_to_pil(image) | |
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) | |
) | |
return image, has_nsfw_concept | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents | |
def decode_latents(self, latents): | |
deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" | |
deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents, return_dict=False)[0] | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
return image | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_inputs( | |
self, | |
prompt, | |
source_embeds, | |
target_embeds, | |
callback_steps, | |
prompt_embeds=None, | |
): | |
if (callback_steps is None) or ( | |
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if source_embeds is None and target_embeds is None: | |
raise ValueError("`source_embeds` and `target_embeds` cannot be undefined.") | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def generate_caption(self, images): | |
"""Generates caption for a given image.""" | |
text = "a photography of" | |
prev_device = self.caption_generator.device | |
device = self._execution_device | |
inputs = self.caption_processor(images, text, return_tensors="pt").to( | |
device=device, dtype=self.caption_generator.dtype | |
) | |
self.caption_generator.to(device) | |
outputs = self.caption_generator.generate(**inputs, max_new_tokens=128) | |
# offload caption generator | |
self.caption_generator.to(prev_device) | |
caption = self.caption_processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
return caption | |
def construct_direction(self, embs_source: torch.Tensor, embs_target: torch.Tensor): | |
"""Constructs the edit direction to steer the image generation process semantically.""" | |
return (embs_target.mean(0) - embs_source.mean(0)).unsqueeze(0) | |
def get_embeds(self, prompt: List[str], batch_size: int = 16) -> torch.FloatTensor: | |
num_prompts = len(prompt) | |
embeds = [] | |
for i in range(0, num_prompts, batch_size): | |
prompt_slice = prompt[i : i + batch_size] | |
input_ids = self.tokenizer( | |
prompt_slice, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
).input_ids | |
input_ids = input_ids.to(self.text_encoder.device) | |
embeds.append(self.text_encoder(input_ids)[0]) | |
return torch.cat(embeds, dim=0).mean(0)[None] | |
def prepare_image_latents(self, image, batch_size, dtype, device, generator=None): | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
image = image.to(device=device, dtype=dtype) | |
if image.shape[1] == 4: | |
latents = image | |
else: | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if isinstance(generator, list): | |
latents = [ | |
self.vae.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | |
] | |
latents = torch.cat(latents, dim=0) | |
else: | |
latents = self.vae.encode(image).latent_dist.sample(generator) | |
latents = self.vae.config.scaling_factor * latents | |
if batch_size != latents.shape[0]: | |
if batch_size % latents.shape[0] == 0: | |
# expand image_latents for batch_size | |
deprecation_message = ( | |
f"You have passed {batch_size} text prompts (`prompt`), but only {latents.shape[0]} initial" | |
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
" your script to pass as many initial images as text prompts to suppress this warning." | |
) | |
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
additional_latents_per_image = batch_size // latents.shape[0] | |
latents = torch.cat([latents] * additional_latents_per_image, dim=0) | |
else: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
latents = torch.cat([latents], dim=0) | |
return latents | |
def get_epsilon(self, model_output: torch.Tensor, sample: torch.Tensor, timestep: int): | |
pred_type = self.inverse_scheduler.config.prediction_type | |
alpha_prod_t = self.inverse_scheduler.alphas_cumprod[timestep] | |
beta_prod_t = 1 - alpha_prod_t | |
if pred_type == "epsilon": | |
return model_output | |
elif pred_type == "sample": | |
return (sample - alpha_prod_t ** (0.5) * model_output) / beta_prod_t ** (0.5) | |
elif pred_type == "v_prediction": | |
return (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample | |
else: | |
raise ValueError( | |
f"prediction_type given as {pred_type} must be one of `epsilon`, `sample`, or `v_prediction`" | |
) | |
def auto_corr_loss(self, hidden_states, generator=None): | |
reg_loss = 0.0 | |
for i in range(hidden_states.shape[0]): | |
for j in range(hidden_states.shape[1]): | |
noise = hidden_states[i : i + 1, j : j + 1, :, :] | |
while True: | |
roll_amount = torch.randint(noise.shape[2] // 2, (1,), generator=generator).item() | |
reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=2)).mean() ** 2 | |
reg_loss += (noise * torch.roll(noise, shifts=roll_amount, dims=3)).mean() ** 2 | |
if noise.shape[2] <= 8: | |
break | |
noise = F.avg_pool2d(noise, kernel_size=2) | |
return reg_loss | |
def kl_divergence(self, hidden_states): | |
mean = hidden_states.mean() | |
var = hidden_states.var() | |
return var + mean**2 - 1 - torch.log(var + 1e-7) | |
def __call__( | |
self, | |
prompt: Optional[Union[str, List[str]]] = None, | |
source_embeds: torch.Tensor = None, | |
target_embeds: torch.Tensor = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
cross_attention_guidance_amount: float = 0.1, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
source_embeds (`torch.Tensor`): | |
Source concept embeddings. Generation of the embeddings as per the [original | |
paper](https://arxiv.org/abs/2302.03027). Used in discovering the edit direction. | |
target_embeds (`torch.Tensor`): | |
Target concept embeddings. Generation of the embeddings as per the [original | |
paper](https://arxiv.org/abs/2302.03027). Used in discovering the edit direction. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
cross_attention_guidance_amount (`float`, defaults to 0.1): | |
Amount of guidance needed from the reference cross-attention maps. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
# 0. Define the spatial resolutions. | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
source_embeds, | |
target_embeds, | |
callback_steps, | |
prompt_embeds, | |
) | |
# 3. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if cross_attention_kwargs is None: | |
cross_attention_kwargs = {} | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
clip_skip=clip_skip, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Generate the inverted noise from the input image or any other image | |
# generated from the input prompt. | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
latents_init = latents.clone() | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 8. Rejig the UNet so that we can obtain the cross-attenion maps and | |
# use them for guiding the subsequent image generation. | |
self.unet = prepare_unet(self.unet) | |
# 7. Denoising loop where we obtain the cross-attention maps. | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs={"timestep": t}, | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
# 8. Compute the edit directions. | |
edit_direction = self.construct_direction(source_embeds, target_embeds).to(prompt_embeds.device) | |
# 9. Edit the prompt embeddings as per the edit directions discovered. | |
prompt_embeds_edit = prompt_embeds.clone() | |
prompt_embeds_edit[1:2] += edit_direction | |
# 10. Second denoising loop to generate the edited image. | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
latents = latents_init | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# we want to learn the latent such that it steers the generation | |
# process towards the edited direction, so make the make initial | |
# noise learnable | |
x_in = latent_model_input.detach().clone() | |
x_in.requires_grad = True | |
# optimizer | |
opt = torch.optim.SGD([x_in], lr=cross_attention_guidance_amount) | |
with torch.enable_grad(): | |
# initialize loss | |
loss = Pix2PixZeroL2Loss() | |
# predict the noise residual | |
noise_pred = self.unet( | |
x_in, | |
t, | |
encoder_hidden_states=prompt_embeds_edit.detach(), | |
cross_attention_kwargs={"timestep": t, "loss": loss}, | |
).sample | |
loss.loss.backward(retain_graph=False) | |
opt.step() | |
# recompute the noise | |
noise_pred = self.unet( | |
x_in.detach(), | |
t, | |
encoder_hidden_states=prompt_embeds_edit, | |
cross_attention_kwargs={"timestep": None}, | |
).sample | |
latents = x_in.detach().chunk(2)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if not output_type == "latent": | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
def invert( | |
self, | |
prompt: Optional[str] = None, | |
image: PipelineImageInput = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 1, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
cross_attention_guidance_amount: float = 0.1, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
callback_steps: Optional[int] = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
lambda_auto_corr: float = 20.0, | |
lambda_kl: float = 20.0, | |
num_reg_steps: int = 5, | |
num_auto_corr_rolls: int = 5, | |
): | |
r""" | |
Function used to generate inverted latents given a prompt and image. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
image (`torch.FloatTensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
`Image`, or tensor representing an image batch which will be used for conditioning. Can also accept | |
image latents as `image`, if passing latents directly, it will not be encoded again. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 1): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
cross_attention_guidance_amount (`float`, defaults to 0.1): | |
Amount of guidance needed from the reference cross-attention maps. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
lambda_auto_corr (`float`, *optional*, defaults to 20.0): | |
Lambda parameter to control auto correction | |
lambda_kl (`float`, *optional*, defaults to 20.0): | |
Lambda parameter to control Kullback–Leibler divergence output | |
num_reg_steps (`int`, *optional*, defaults to 5): | |
Number of regularization loss steps | |
num_auto_corr_rolls (`int`, *optional*, defaults to 5): | |
Number of auto correction roll steps | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.pipeline_stable_diffusion_pix2pix_zero.Pix2PixInversionPipelineOutput`] or | |
`tuple`: | |
[`~pipelines.stable_diffusion.pipeline_stable_diffusion_pix2pix_zero.Pix2PixInversionPipelineOutput`] if | |
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is the inverted | |
latents tensor and then second is the corresponding decoded image. | |
""" | |
# 1. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if cross_attention_kwargs is None: | |
cross_attention_kwargs = {} | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Preprocess image | |
image = self.image_processor.preprocess(image) | |
# 4. Prepare latent variables | |
latents = self.prepare_image_latents(image, batch_size, self.vae.dtype, device, generator) | |
# 5. Encode input prompt | |
num_images_per_prompt = 1 | |
prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
prompt_embeds=prompt_embeds, | |
) | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
if do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
# 4. Prepare timesteps | |
self.inverse_scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.inverse_scheduler.timesteps | |
# 6. Rejig the UNet so that we can obtain the cross-attenion maps and | |
# use them for guiding the subsequent image generation. | |
self.unet = prepare_unet(self.unet) | |
# 7. Denoising loop where we obtain the cross-attention maps. | |
num_warmup_steps = len(timesteps) - num_inference_steps * self.inverse_scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.inverse_scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs={"timestep": t}, | |
).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# regularization of the noise prediction | |
with torch.enable_grad(): | |
for _ in range(num_reg_steps): | |
if lambda_auto_corr > 0: | |
for _ in range(num_auto_corr_rolls): | |
var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) | |
# Derive epsilon from model output before regularizing to IID standard normal | |
var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t) | |
l_ac = self.auto_corr_loss(var_epsilon, generator=generator) | |
l_ac.backward() | |
grad = var.grad.detach() / num_auto_corr_rolls | |
noise_pred = noise_pred - lambda_auto_corr * grad | |
if lambda_kl > 0: | |
var = torch.autograd.Variable(noise_pred.detach().clone(), requires_grad=True) | |
# Derive epsilon from model output before regularizing to IID standard normal | |
var_epsilon = self.get_epsilon(var, latent_model_input.detach(), t) | |
l_kld = self.kl_divergence(var_epsilon) | |
l_kld.backward() | |
grad = var.grad.detach() | |
noise_pred = noise_pred - lambda_kl * grad | |
noise_pred = noise_pred.detach() | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.inverse_scheduler.step(noise_pred, t, latents).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps and (i + 1) % self.inverse_scheduler.order == 0 | |
): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
inverted_latents = latents.detach().clone() | |
# 8. Post-processing | |
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (inverted_latents, image) | |
return Pix2PixInversionPipelineOutput(latents=inverted_latents, images=image) | |