Spaces:
Runtime error
Runtime error
Update sentiment-analyser.py
Browse files- sentiment-analyser.py +5 -2
sentiment-analyser.py
CHANGED
@@ -3,7 +3,7 @@ from transformers import pipeline, AutoTokenizer
|
|
3 |
|
4 |
st.title('Sentiment Analyser App')
|
5 |
st.write('Welcome to my sentiment analysis app!')
|
6 |
-
model_options=["sentiment-analysis", "twitter-xlm-roberta-base-sentiment"]
|
7 |
|
8 |
form = st.form(key='sentiment-form')
|
9 |
model_type = form.selectbox(label="Select a model", options=model_options)
|
@@ -16,6 +16,9 @@ def classification(user_input, type):
|
|
16 |
elif type=="twitter-xlm-roberta-base-sentiment":
|
17 |
path="cardiffnlp/twitter-xlm-roberta-base-sentiment"
|
18 |
classifier = pipeline("sentiment-analysis", model=path, tokenizer=path)
|
|
|
|
|
|
|
19 |
result = classifier(user_input)[0]
|
20 |
return result
|
21 |
|
@@ -23,7 +26,7 @@ if submit:
|
|
23 |
resultf = classification(user_input, model_type)
|
24 |
label = resultf['label']
|
25 |
score = resultf['score']
|
26 |
-
if (label == 'POSITIVE') or (label =='Positive'):
|
27 |
st.success(f'{label} sentiment (score: {score})')
|
28 |
else:
|
29 |
st.error(f'{label} sentiment (score: {score})')
|
|
|
3 |
|
4 |
st.title('Sentiment Analyser App')
|
5 |
st.write('Welcome to my sentiment analysis app!')
|
6 |
+
model_options=["sentiment-analysis", "twitter-xlm-roberta-base-sentiment", "sentiment-roberta-large-english-3-classes"]
|
7 |
|
8 |
form = st.form(key='sentiment-form')
|
9 |
model_type = form.selectbox(label="Select a model", options=model_options)
|
|
|
16 |
elif type=="twitter-xlm-roberta-base-sentiment":
|
17 |
path="cardiffnlp/twitter-xlm-roberta-base-sentiment"
|
18 |
classifier = pipeline("sentiment-analysis", model=path, tokenizer=path)
|
19 |
+
elif type=="sentiment-roberta-large-english-3-classes":
|
20 |
+
path="j-hartmann/sentiment-roberta-large-english-3-classes"
|
21 |
+
classifier = pipeline("text-classification", model=path, return_all_scores=True)
|
22 |
result = classifier(user_input)[0]
|
23 |
return result
|
24 |
|
|
|
26 |
resultf = classification(user_input, model_type)
|
27 |
label = resultf['label']
|
28 |
score = resultf['score']
|
29 |
+
if (label == 'POSITIVE') or (label =='Positive') or (label =='positive'):
|
30 |
st.success(f'{label} sentiment (score: {score})')
|
31 |
else:
|
32 |
st.error(f'{label} sentiment (score: {score})')
|