File size: 5,047 Bytes
6baa93c 3ab17e6 6baa93c 8d7237d 6baa93c 8d7237d 6baa93c ec80eac 6baa93c ec80eac 6baa93c ec80eac 6baa93c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import spaces
import gradio as gr
import time
import torch
from PIL import Image
from segment_utils import(
segment_image,
restore_result,
)
from enhance_utils import enhance_image
DEFAULT_SRC_PROMPT = "a woman, photo"
DEFAULT_EDIT_PROMPT = "a beautiful woman, photo, hollywood style face, 8k, high quality"
DEFAULT_CATEGORY = "face"
device = "cuda" if torch.cuda.is_available() else "cpu"
def create_demo() -> gr.Blocks:
from inversion_run_base import run as base_run
@spaces.GPU(duration=15)
def image_to_image(
input_image: Image,
input_image_prompt: str,
edit_prompt: str,
seed: int,
w1: float,
num_steps: int,
start_step: int,
guidance_scale: float,
generate_size: int,
adapter_weights: float,
enhance_face: bool = True,
):
w2 = 1.0
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
run_model = base_run
res_image = run_model(
input_image,
input_image_prompt,
edit_prompt,
generate_size,
seed,
w1,
w2,
num_steps,
start_step,
guidance_scale,
adapter_weights,
)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
enhanced_image = enhance_image(res_image, enhance_face)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return enhanced_image, res_image, time_cost_str
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
with gr.Blocks() as demo:
croper = gr.State()
with gr.Row():
with gr.Column():
input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
start_step = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Start Step")
with gr.Accordion("Advanced Options", open=False):
guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale")
generate_size = gr.Number(label="Generate Size", value=1024)
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
enhance_face = gr.Checkbox(label="Enhance Face", value=False)
adapter_weights = gr.Slider(minimum=0, maximum=1, value=0.5, step=0.1, label="Adapter Weights", visible=False)
with gr.Column():
seed = gr.Number(label="Seed", value=8)
w1 = gr.Number(label="W1", value=2)
g_btn = gr.Button("Edit Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Column():
restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False)
download_path = gr.File(label="Download the output image", interactive=False)
with gr.Column():
origin_area_image = gr.Image(label="Origin Area Image", format="png", type="pil", interactive=False)
enhanced_image = gr.Image(label="Enhanced Image", format="png", type="pil", interactive=False)
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
generated_image = gr.Image(label="Generated Image", format="png", type="pil", interactive=False)
g_btn.click(
fn=segment_image,
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
outputs=[origin_area_image, croper],
).success(
fn=image_to_image,
inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, adapter_weights, enhance_face],
outputs=[enhanced_image, generated_image, generated_cost],
).success(
fn=restore_result,
inputs=[croper, category, enhanced_image],
outputs=[restored_image, download_path],
)
return demo |