File size: 5,768 Bytes
6baa93c
 
 
 
 
 
 
 
 
 
 
 
423ba5e
 
ff163f1
 
6baa93c
 
 
 
 
 
 
 
3ab17e6
6baa93c
 
 
 
 
 
 
 
 
 
423ba5e
 
ad3284c
423ba5e
6baa93c
 
 
 
 
423ba5e
 
 
 
 
 
 
 
 
deca47d
6baa93c
 
 
 
 
 
 
 
 
 
 
 
 
 
423ba5e
6baa93c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423ba5e
 
 
 
 
6baa93c
8d67bb5
 
6baa93c
 
8d67bb5
6baa93c
 
 
 
e8cf780
6baa93c
 
 
 
 
 
ec80eac
6baa93c
 
ec80eac
 
6baa93c
ec80eac
6baa93c
 
 
 
 
 
 
423ba5e
6baa93c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import spaces
import gradio as gr
import time
import torch

from PIL import Image
from segment_utils import(
    segment_image,
    restore_result,
)
from enhance_utils import enhance_image

from upscale import upscale_image

DEFAULT_SRC_PROMPT = "a person"
DEFAULT_EDIT_PROMPT = "a person with perfect face"

DEFAULT_CATEGORY = "face"

device = "cuda" if torch.cuda.is_available() else "cpu"

def create_demo() -> gr.Blocks:
    from inversion_run_base import run as base_run

    @spaces.GPU(duration=15)
    def image_to_image(
        input_image: Image,
        input_image_prompt: str,
        edit_prompt: str,
        seed: int,
        w1: float,
        num_steps: int,
        start_step: int,
        guidance_scale: float,
        generate_size: int,
        enhance_scale: int = 2,
        pre_upscale: bool = True,
        upscale_prompt: str = "a person with perfect face",
        pre_upscale_steps: int = 10,
    ):
        w2 = 1.0
        run_task_time = 0
        time_cost_str = ''
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        if pre_upscale:
            pre_upscale_start_size = generate_size // 4
            input_image = upscale_image(
                input_image,
                upscale_prompt,
                start_size=pre_upscale_start_size,
                upscale_steps=pre_upscale_steps,
                seed=seed,
            )
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        run_model = base_run
        res_image = run_model(
            input_image,
            input_image_prompt,
            edit_prompt,
            generate_size,
            seed,
            w1,
            w2,
            num_steps,
            start_step,
            guidance_scale,
        )
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
        enhanced_image = enhance_image(res_image, scale = enhance_scale)
        run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)

        return enhanced_image, res_image, time_cost_str

    def get_time_cost(run_task_time, time_cost_str):
        now_time = int(time.time()*1000)
        if run_task_time == 0:
            time_cost_str = 'start'
        else:
            if time_cost_str != '': 
                time_cost_str += f'-->'
            time_cost_str += f'{now_time - run_task_time}'
        run_task_time = now_time
        return run_task_time, time_cost_str

    with gr.Blocks() as demo:
        croper = gr.State()
        with gr.Row():
            with gr.Column():
                input_image_prompt = gr.Textbox(lines=1, label="Input Image Prompt", value=DEFAULT_SRC_PROMPT)
                edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
                category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
                with gr.Accordion("Advanced Options", open=False):
                    enhance_scale = gr.Number(label="Enhance Scale", value=2)
                    pre_upscale = gr.Checkbox(label="Pre Upscale", value=True)
                    upscale_prompt = gr.Textbox(lines=1, label="Upscale Prompt", value="a person with pefect face")
                    pre_upscale_steps = gr.Number(label="Pre Upscale Steps", value=10)
            with gr.Column():
                num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
                start_step = gr.Slider(minimum=1, maximum=100, value=15, step=1, label="Start Step")
                with gr.Accordion("Advanced Options", open=False):
                    guidance_scale = gr.Slider(minimum=0, maximum=20, value=0, step=0.5, label="Guidance Scale")
                    generate_size = gr.Number(label="Generate Size", value=1024)
                    mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
                    mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
            with gr.Column():
                seed = gr.Number(label="Seed", value=8)
                w1 = gr.Number(label="W1", value=1.5)
                g_btn = gr.Button("Edit Image")
                
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", type="pil")
            with gr.Column():
                restored_image = gr.Image(label="Restored Image", format="png", type="pil", interactive=False)
                download_path = gr.File(label="Download the output image", interactive=False)
            with gr.Column():
                origin_area_image = gr.Image(label="Origin Area Image", format="png", type="pil", interactive=False)
                enhanced_image = gr.Image(label="Enhanced Image", format="png", type="pil", interactive=False)
                generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
                generated_image = gr.Image(label="Generated Image", format="png", type="pil", interactive=False)
        
        g_btn.click(
            fn=segment_image,
            inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
            outputs=[origin_area_image, croper],
        ).success(
            fn=image_to_image,
            inputs=[origin_area_image, input_image_prompt, edit_prompt,seed,w1, num_steps, start_step, guidance_scale, generate_size, enhance_scale, pre_upscale, upscale_prompt, pre_upscale_steps],
            outputs=[enhanced_image, generated_image, generated_cost],
        ).success(
            fn=restore_result,
            inputs=[croper, category, enhanced_image],
            outputs=[restored_image, download_path],
        )

    return demo