smraux commited on
Commit
61ebe0c
·
1 Parent(s): d4454d1

Add new files and directories

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +52 -0
  2. Dockerfile +1 -1
  3. LICENSE +674 -0
  4. README.md +427 -11
  5. args_manager.py +40 -0
  6. auth-example.json +6 -0
  7. build_launcher.py +26 -0
  8. css/style.css +220 -0
  9. entry_with_update.py +46 -0
  10. environment.yaml +7 -0
  11. experiments_expansion.py +8 -0
  12. experiments_face.py +7 -0
  13. experiments_interrogate.py +8 -0
  14. extras/BLIP/configs/bert_config.json +21 -0
  15. extras/BLIP/configs/caption_coco.yaml +33 -0
  16. extras/BLIP/configs/med_config.json +21 -0
  17. extras/BLIP/configs/nlvr.yaml +21 -0
  18. extras/BLIP/configs/nocaps.yaml +15 -0
  19. extras/BLIP/configs/pretrain.yaml +27 -0
  20. extras/BLIP/configs/retrieval_coco.yaml +34 -0
  21. extras/BLIP/configs/retrieval_flickr.yaml +34 -0
  22. extras/BLIP/configs/retrieval_msrvtt.yaml +12 -0
  23. extras/BLIP/configs/vqa.yaml +25 -0
  24. extras/BLIP/models/bert_tokenizer/config.json +23 -0
  25. extras/BLIP/models/bert_tokenizer/tokenizer.json +0 -0
  26. extras/BLIP/models/bert_tokenizer/tokenizer_config.json +3 -0
  27. extras/BLIP/models/bert_tokenizer/vocab.txt +0 -0
  28. extras/BLIP/models/blip.py +239 -0
  29. extras/BLIP/models/blip_itm.py +76 -0
  30. extras/BLIP/models/blip_nlvr.py +105 -0
  31. extras/BLIP/models/blip_pretrain.py +339 -0
  32. extras/BLIP/models/blip_retrieval.py +319 -0
  33. extras/BLIP/models/blip_vqa.py +186 -0
  34. extras/BLIP/models/med.py +955 -0
  35. extras/BLIP/models/nlvr_encoder.py +843 -0
  36. extras/BLIP/models/vit.py +308 -0
  37. extras/expansion.py +126 -0
  38. extras/face_crop.py +50 -0
  39. extras/facexlib/detection/__init__.py +31 -0
  40. extras/facexlib/detection/align_trans.py +219 -0
  41. extras/facexlib/detection/matlab_cp2tform.py +317 -0
  42. extras/facexlib/detection/retinaface.py +366 -0
  43. extras/facexlib/detection/retinaface_net.py +196 -0
  44. extras/facexlib/detection/retinaface_utils.py +421 -0
  45. extras/facexlib/parsing/__init__.py +24 -0
  46. extras/facexlib/parsing/bisenet.py +140 -0
  47. extras/facexlib/parsing/parsenet.py +194 -0
  48. extras/facexlib/parsing/resnet.py +69 -0
  49. extras/facexlib/utils/__init__.py +7 -0
  50. extras/facexlib/utils/face_restoration_helper.py +374 -0
.gitignore ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ __pycache__
2
+ *.ckpt
3
+ *.safetensors
4
+ *.pth
5
+ *.pt
6
+ *.bin
7
+ *.patch
8
+ *.backup
9
+ *.corrupted
10
+ *.partial
11
+ *.onnx
12
+ sorted_styles.json
13
+ /input
14
+ /cache
15
+ /language/default.json
16
+ /test_imgs
17
+ config.txt
18
+ config_modification_tutorial.txt
19
+ user_path_config.txt
20
+ user_path_config-deprecated.txt
21
+ /modules/*.png
22
+ /repositories
23
+ /venv
24
+ /tmp
25
+ /ui-config.json
26
+ /outputs
27
+ /config.json
28
+ /log
29
+ /webui.settings.bat
30
+ /embeddings
31
+ /styles.csv
32
+ /params.txt
33
+ /styles.csv.bak
34
+ /webui-user.bat
35
+ /webui-user.sh
36
+ /interrogate
37
+ /user.css
38
+ /.idea
39
+ /notification.ogg
40
+ /notification.mp3
41
+ /SwinIR
42
+ /textual_inversion
43
+ .vscode
44
+ /extensions
45
+ /test/stdout.txt
46
+ /test/stderr.txt
47
+ /cache.json*
48
+ /config_states/
49
+ /node_modules
50
+ /package-lock.json
51
+ /.coverage*
52
+ /auth.json
Dockerfile CHANGED
@@ -17,4 +17,4 @@ EXPOSE 80
17
  ENV NAME World
18
 
19
  # Run app.py when the container launches
20
- CMD ["python", "./app.py"]
 
17
  ENV NAME World
18
 
19
  # Run app.py when the container launches
20
+ CMD ["python", "./python entry_with_update.py --preset realistic"]
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
README.md CHANGED
@@ -1,11 +1,427 @@
1
- ---
2
- title: Img Gen With Fooocus Space
3
- emoji: 👁
4
- colorFrom: pink
5
- colorTo: pink
6
- sdk: docker
7
- pinned: false
8
- license: mit
9
- ---
10
-
11
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align=center>
2
+ <img src="https://github.com/lllyasviel/Fooocus/assets/19834515/483fb86d-c9a2-4c20-997c-46dafc124f25">
3
+
4
+ **Non-cherry-picked** random batch by just typing two words "forest elf",
5
+
6
+ without any parameter tweaking, without any strange prompt tags.
7
+
8
+ See also **non-cherry-picked** generalization and diversity tests [here](https://github.com/lllyasviel/Fooocus/discussions/808) and [here](https://github.com/lllyasviel/Fooocus/discussions/679) and [here](https://github.com/lllyasviel/Fooocus/discussions/679#realistic).
9
+
10
+ In the entire open source community, only Fooocus can achieve this level of **non-cherry-picked** quality.
11
+
12
+ </div>
13
+
14
+
15
+ # Fooocus
16
+
17
+ Fooocus is an image generating software (based on [Gradio](https://www.gradio.app/)).
18
+
19
+ Fooocus is a rethinking of Stable Diffusion and Midjourney’s designs:
20
+
21
+ * Learned from Stable Diffusion, the software is offline, open source, and free.
22
+
23
+ * Learned from Midjourney, the manual tweaking is not needed, and users only need to focus on the prompts and images.
24
+
25
+ Fooocus has included and automated [lots of inner optimizations and quality improvements](#tech_list). Users can forget all those difficult technical parameters, and just enjoy the interaction between human and computer to "explore new mediums of thought and expanding the imaginative powers of the human species" `[1]`.
26
+
27
+ Fooocus has simplified the installation. Between pressing "download" and generating the first image, the number of needed mouse clicks is strictly limited to less than 3. Minimal GPU memory requirement is 4GB (Nvidia).
28
+
29
+ `[1]` David Holz, 2019.
30
+
31
+ **Recently many fake websites exist on Google when you search “fooocus”. Do not trust those – here is the only official source of Fooocus.**
32
+
33
+ ## [Installing Fooocus](#download)
34
+
35
+ # Moving from Midjourney to Fooocus
36
+
37
+ Using Fooocus is as easy as (probably easier than) Midjourney – but this does not mean we lack functionality. Below are the details.
38
+
39
+ | Midjourney | Fooocus |
40
+ | - | - |
41
+ | High-quality text-to-image without needing much prompt engineering or parameter tuning. <br> (Unknown method) | High-quality text-to-image without needing much prompt engineering or parameter tuning. <br> (Fooocus has an offline GPT-2 based prompt processing engine and lots of sampling improvements so that results are always beautiful, no matter if your prompt is as short as “house in garden” or as long as 1000 words) |
42
+ | V1 V2 V3 V4 | Input Image -> Upscale or Variation -> Vary (Subtle) / Vary (Strong)|
43
+ | U1 U2 U3 U4 | Input Image -> Upscale or Variation -> Upscale (1.5x) / Upscale (2x) |
44
+ | Inpaint / Up / Down / Left / Right (Pan) | Input Image -> Inpaint or Outpaint -> Inpaint / Up / Down / Left / Right <br> (Fooocus uses its own inpaint algorithm and inpaint models so that results are more satisfying than all other software that uses standard SDXL inpaint method/model) |
45
+ | Image Prompt | Input Image -> Image Prompt <br> (Fooocus uses its own image prompt algorithm so that result quality and prompt understanding are more satisfying than all other software that uses standard SDXL methods like standard IP-Adapters or Revisions) |
46
+ | --style | Advanced -> Style |
47
+ | --stylize | Advanced -> Advanced -> Guidance |
48
+ | --niji | [Multiple launchers: "run.bat", "run_anime.bat", and "run_realistic.bat".](https://github.com/lllyasviel/Fooocus/discussions/679) <br> Fooocus support SDXL models on Civitai <br> (You can google search “Civitai” if you do not know about it) |
49
+ | --quality | Advanced -> Quality |
50
+ | --repeat | Advanced -> Image Number |
51
+ | Multi Prompts (::) | Just use multiple lines of prompts |
52
+ | Prompt Weights | You can use " I am (happy:1.5)". <br> Fooocus uses A1111's reweighting algorithm so that results are better than ComfyUI if users directly copy prompts from Civitai. (Because if prompts are written in ComfyUI's reweighting, users are less likely to copy prompt texts as they prefer dragging files) <br> To use embedding, you can use "(embedding:file_name:1.1)" |
53
+ | --no | Advanced -> Negative Prompt |
54
+ | --ar | Advanced -> Aspect Ratios |
55
+ | InsightFace | Input Image -> Image Prompt -> Advanced -> FaceSwap |
56
+ | Describe | Input Image -> Describe |
57
+
58
+ We also have a few things borrowed from the best parts of LeonardoAI:
59
+
60
+ | LeonardoAI | Fooocus |
61
+ | - | - |
62
+ | Prompt Magic | Advanced -> Style -> Fooocus V2 |
63
+ | Advanced Sampler Parameters (like Contrast/Sharpness/etc) | Advanced -> Advanced -> Sampling Sharpness / etc |
64
+ | User-friendly ControlNets | Input Image -> Image Prompt -> Advanced |
65
+
66
+ Fooocus also developed many "fooocus-only" features for advanced users to get perfect results. [Click here to browse the advanced features.](https://github.com/lllyasviel/Fooocus/discussions/117)
67
+
68
+ # Download
69
+
70
+ ### Windows
71
+
72
+ You can directly download Fooocus with:
73
+
74
+ **[>>> Click here to download <<<](https://github.com/lllyasviel/Fooocus/releases/download/release/Fooocus_win64_2-1-831.7z)**
75
+
76
+ After you download the file, please uncompress it and then run the "run.bat".
77
+
78
+ ![image](https://github.com/lllyasviel/Fooocus/assets/19834515/c49269c4-c274-4893-b368-047c401cc58c)
79
+
80
+ The first time you launch the software, it will automatically download models:
81
+
82
+ 1. It will download [default models](#models) to the folder "Fooocus\models\checkpoints" given different presets. You can download them in advance if you do not want automatic download.
83
+ 2. Note that if you use inpaint, at the first time you inpaint an image, it will download [Fooocus's own inpaint control model from here](https://huggingface.co/lllyasviel/fooocus_inpaint/resolve/main/inpaint_v26.fooocus.patch) as the file "Fooocus\models\inpaint\inpaint_v26.fooocus.patch" (the size of this file is 1.28GB).
84
+
85
+ After Fooocus 2.1.60, you will also have `run_anime.bat` and `run_realistic.bat`. They are different model presets (and require different models, but they will be automatically downloaded). [Check here for more details](https://github.com/lllyasviel/Fooocus/discussions/679).
86
+
87
+ ![image](https://github.com/lllyasviel/Fooocus/assets/19834515/d386f817-4bd7-490c-ad89-c1e228c23447)
88
+
89
+ If you already have these files, you can copy them to the above locations to speed up installation.
90
+
91
+ Note that if you see **"MetadataIncompleteBuffer" or "PytorchStreamReader"**, then your model files are corrupted. Please download models again.
92
+
93
+ Below is a test on a relatively low-end laptop with **16GB System RAM** and **6GB VRAM** (Nvidia 3060 laptop). The speed on this machine is about 1.35 seconds per iteration. Pretty impressive – nowadays laptops with 3060 are usually at very acceptable price.
94
+
95
+ ![image](https://github.com/lllyasviel/Fooocus/assets/19834515/938737a5-b105-4f19-b051-81356cb7c495)
96
+
97
+ Besides, recently many other software report that Nvidia driver above 532 is sometimes 10x slower than Nvidia driver 531. If your generation time is very long, consider download [Nvidia Driver 531 Laptop](https://www.nvidia.com/download/driverResults.aspx/199991/en-us/) or [Nvidia Driver 531 Desktop](https://www.nvidia.com/download/driverResults.aspx/199990/en-us/).
98
+
99
+ Note that the minimal requirement is **4GB Nvidia GPU memory (4GB VRAM)** and **8GB system memory (8GB RAM)**. This requires using Microsoft’s Virtual Swap technique, which is automatically enabled by your Windows installation in most cases, so you often do not need to do anything about it. However, if you are not sure, or if you manually turned it off (would anyone really do that?), or **if you see any "RuntimeError: CPUAllocator"**, you can enable it here:
100
+
101
+ <details>
102
+ <summary>Click here to see the image instructions. </summary>
103
+
104
+ ![image](https://github.com/lllyasviel/Fooocus/assets/19834515/2a06b130-fe9b-4504-94f1-2763be4476e9)
105
+
106
+ **And make sure that you have at least 40GB free space on each drive if you still see "RuntimeError: CPUAllocator" !**
107
+
108
+ </details>
109
+
110
+ Please open an issue if you use similar devices but still cannot achieve acceptable performances.
111
+
112
+ Note that the [minimal requirement](#minimal-requirement) for different platforms is different.
113
+
114
+ See also the common problems and troubleshoots [here](troubleshoot.md).
115
+
116
+ ### Colab
117
+
118
+ (Last tested - 2023 Dec 12)
119
+
120
+ | Colab | Info
121
+ | --- | --- |
122
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/lllyasviel/Fooocus/blob/main/fooocus_colab.ipynb) | Fooocus Official
123
+
124
+ In Colab, you can modify the last line to `!python entry_with_update.py --share` or `!python entry_with_update.py --preset anime --share` or `!python entry_with_update.py --preset realistic --share` for Fooocus Default/Anime/Realistic Edition.
125
+
126
+ Note that this Colab will disable refiner by default because Colab free's resources are relatively limited (and some "big" features like image prompt may cause free-tier Colab to disconnect). We make sure that basic text-to-image is always working on free-tier Colab.
127
+
128
+ Thanks to [camenduru](https://github.com/camenduru)!
129
+
130
+ ### Linux (Using Anaconda)
131
+
132
+ If you want to use Anaconda/Miniconda, you can
133
+
134
+ git clone https://github.com/lllyasviel/Fooocus.git
135
+ cd Fooocus
136
+ conda env create -f environment.yaml
137
+ conda activate fooocus
138
+ pip install -r requirements_versions.txt
139
+
140
+ Then download the models: download [default models](#models) to the folder "Fooocus\models\checkpoints". **Or let Fooocus automatically download the models** using the launcher:
141
+
142
+ conda activate fooocus
143
+ python entry_with_update.py
144
+
145
+ Or, if you want to open a remote port, use
146
+
147
+ conda activate fooocus
148
+ python entry_with_update.py --listen
149
+
150
+ Use `python entry_with_update.py --preset anime` or `python entry_with_update.py --preset realistic` for Fooocus Anime/Realistic Edition.
151
+
152
+ ### Linux (Using Python Venv)
153
+
154
+ Your Linux needs to have **Python 3.10** installed, and let's say your Python can be called with the command **python3** with your venv system working; you can
155
+
156
+ git clone https://github.com/lllyasviel/Fooocus.git
157
+ cd Fooocus
158
+ python3 -m venv fooocus_env
159
+ source fooocus_env/bin/activate
160
+ pip install -r requirements_versions.txt
161
+
162
+ See the above sections for model downloads. You can launch the software with:
163
+
164
+ source fooocus_env/bin/activate
165
+ python entry_with_update.py
166
+
167
+ Or, if you want to open a remote port, use
168
+
169
+ source fooocus_env/bin/activate
170
+ python entry_with_update.py --listen
171
+
172
+ Use `python entry_with_update.py --preset anime` or `python entry_with_update.py --preset realistic` for Fooocus Anime/Realistic Edition.
173
+
174
+ ### Linux (Using native system Python)
175
+
176
+ If you know what you are doing, and your Linux already has **Python 3.10** installed, and your Python can be called with the command **python3** (and Pip with **pip3**), you can
177
+
178
+ git clone https://github.com/lllyasviel/Fooocus.git
179
+ cd Fooocus
180
+ pip3 install -r requirements_versions.txt
181
+
182
+ See the above sections for model downloads. You can launch the software with:
183
+
184
+ python3 entry_with_update.py
185
+
186
+ Or, if you want to open a remote port, use
187
+
188
+ python3 entry_with_update.py --listen
189
+
190
+ Use `python entry_with_update.py --preset anime` or `python entry_with_update.py --preset realistic` for Fooocus Anime/Realistic Edition.
191
+
192
+ ### Linux (AMD GPUs)
193
+
194
+ Note that the [minimal requirement](#minimal-requirement) for different platforms is different.
195
+
196
+ Same with the above instructions. You need to change torch to the AMD version
197
+
198
+ pip uninstall torch torchvision torchaudio torchtext functorch xformers
199
+ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.6
200
+
201
+ AMD is not intensively tested, however. The AMD support is in beta.
202
+
203
+ Use `python entry_with_update.py --preset anime` or `python entry_with_update.py --preset realistic` for Fooocus Anime/Realistic Edition.
204
+
205
+ ### Windows(AMD GPUs)
206
+
207
+ Note that the [minimal requirement](#minimal-requirement) for different platforms is different.
208
+
209
+ Same with Windows. Download the software and edit the content of `run.bat` as:
210
+
211
+ .\python_embeded\python.exe -m pip uninstall torch torchvision torchaudio torchtext functorch xformers -y
212
+ .\python_embeded\python.exe -m pip install torch-directml
213
+ .\python_embeded\python.exe -s Fooocus\entry_with_update.py --directml
214
+ pause
215
+
216
+ Then run the `run.bat`.
217
+
218
+ AMD is not intensively tested, however. The AMD support is in beta.
219
+
220
+ For AMD, use `.\python_embeded\python.exe entry_with_update.py --directml --preset anime` or `.\python_embeded\python.exe entry_with_update.py --directml --preset realistic` for Fooocus Anime/Realistic Edition.
221
+
222
+ ### Mac
223
+
224
+ Note that the [minimal requirement](#minimal-requirement) for different platforms is different.
225
+
226
+ Mac is not intensively tested. Below is an unofficial guideline for using Mac. You can discuss problems [here](https://github.com/lllyasviel/Fooocus/pull/129).
227
+
228
+ You can install Fooocus on Apple Mac silicon (M1 or M2) with macOS 'Catalina' or a newer version. Fooocus runs on Apple silicon computers via [PyTorch](https://pytorch.org/get-started/locally/) MPS device acceleration. Mac Silicon computers don't come with a dedicated graphics card, resulting in significantly longer image processing times compared to computers with dedicated graphics cards.
229
+
230
+ 1. Install the conda package manager and pytorch nightly. Read the [Accelerated PyTorch training on Mac](https://developer.apple.com/metal/pytorch/) Apple Developer guide for instructions. Make sure pytorch recognizes your MPS device.
231
+ 1. Open the macOS Terminal app and clone this repository with `git clone https://github.com/lllyasviel/Fooocus.git`.
232
+ 1. Change to the new Fooocus directory, `cd Fooocus`.
233
+ 1. Create a new conda environment, `conda env create -f environment.yaml`.
234
+ 1. Activate your new conda environment, `conda activate fooocus`.
235
+ 1. Install the packages required by Fooocus, `pip install -r requirements_versions.txt`.
236
+ 1. Launch Fooocus by running `python entry_with_update.py`. (Some Mac M2 users may need `python entry_with_update.py --disable-offload-from-vram` to speed up model loading/unloading.) The first time you run Fooocus, it will automatically download the Stable Diffusion SDXL models and will take a significant amount of time, depending on your internet connection.
237
+
238
+ Use `python entry_with_update.py --preset anime` or `python entry_with_update.py --preset realistic` for Fooocus Anime/Realistic Edition.
239
+
240
+ ### Download Previous Version
241
+
242
+ See the guidelines [here](https://github.com/lllyasviel/Fooocus/discussions/1405).
243
+
244
+ ## Minimal Requirement
245
+
246
+ Below is the minimal requirement for running Fooocus locally. If your device capability is lower than this spec, you may not be able to use Fooocus locally. (Please let us know, in any case, if your device capability is lower but Fooocus still works.)
247
+
248
+ | Operating System | GPU | Minimal GPU Memory | Minimal System Memory | [System Swap](troubleshoot.md) | Note |
249
+ |-------------------|------------------------------|------------------------------|---------------------------|--------------------------------|----------------------------------------------------------------------------|
250
+ | Windows/Linux | Nvidia RTX 4XXX | 4GB | 8GB | Required | fastest |
251
+ | Windows/Linux | Nvidia RTX 3XXX | 4GB | 8GB | Required | usually faster than RTX 2XXX |
252
+ | Windows/Linux | Nvidia RTX 2XXX | 4GB | 8GB | Required | usually faster than GTX 1XXX |
253
+ | Windows/Linux | Nvidia GTX 1XXX | 8GB (&ast; 6GB uncertain) | 8GB | Required | only marginally faster than CPU |
254
+ | Windows/Linux | Nvidia GTX 9XX | 8GB | 8GB | Required | faster or slower than CPU |
255
+ | Windows/Linux | Nvidia GTX < 9XX | Not supported | / | / | / |
256
+ | Windows | AMD GPU | 8GB (updated 2023 Dec 30) | 8GB | Required | via DirectML (&ast; ROCm is on hold), about 3x slower than Nvidia RTX 3XXX |
257
+ | Linux | AMD GPU | 8GB | 8GB | Required | via ROCm, about 1.5x slower than Nvidia RTX 3XXX |
258
+ | Mac | M1/M2 MPS | Shared | Shared | Shared | about 9x slower than Nvidia RTX 3XXX |
259
+ | Windows/Linux/Mac | only use CPU | 0GB | 32GB | Required | about 17x slower than Nvidia RTX 3XXX |
260
+
261
+ &ast; AMD GPU ROCm (on hold): The AMD is still working on supporting ROCm on Windows.
262
+
263
+ &ast; Nvidia GTX 1XXX 6GB uncertain: Some people report 6GB success on GTX 10XX, but some other people report failure cases.
264
+
265
+ *Note that Fooocus is only for extremely high quality image generating. We will not support smaller models to reduce the requirement and sacrifice result quality.*
266
+
267
+ ## Troubleshoot
268
+
269
+ See the common problems [here](troubleshoot.md).
270
+
271
+ ## Default Models
272
+ <a name="models"></a>
273
+
274
+ Given different goals, the default models and configs of Fooocus are different:
275
+
276
+ | Task | Windows | Linux args | Main Model | Refiner | Config |
277
+ | --- | --- | --- | --- | --- | --- |
278
+ | General | run.bat | | [juggernautXL v6_RunDiffusion](https://huggingface.co/lllyasviel/fav_models/resolve/main/fav/juggernautXL_version6Rundiffusion.safetensors) | not used | [here](https://github.com/lllyasviel/Fooocus/blob/main/modules/path.py) |
279
+ | Realistic | run_realistic.bat | --preset realistic | [realistic_stock_photo](https://huggingface.co/lllyasviel/fav_models/resolve/main/fav/realisticStockPhoto_v10.safetensors) | not used | [here](https://github.com/lllyasviel/Fooocus/blob/main/presets/realistic.json) |
280
+ | Anime | run_anime.bat | --preset anime | [bluepencil_v50](https://huggingface.co/lllyasviel/fav_models/resolve/main/fav/bluePencilXL_v050.safetensors) | [dreamsharper_v8](https://huggingface.co/lllyasviel/fav_models/resolve/main/fav/DreamShaper_8_pruned.safetensors) (SD1.5) | [here](https://github.com/lllyasviel/Fooocus/blob/main/presets/anime.json) |
281
+
282
+ Note that the download is **automatic** - you do not need to do anything if the internet connection is okay. However, you can download them manually if you (or move them from somewhere else) have your own preparation.
283
+
284
+ ## List of "Hidden" Tricks
285
+ <a name="tech_list"></a>
286
+
287
+ The below things are already inside the software, and **users do not need to do anything about these**.
288
+
289
+ 1. GPT2-based [prompt expansion as a dynamic style "Fooocus V2".](https://github.com/lllyasviel/Fooocus/discussions/117#raw) (similar to Midjourney's hidden pre-processsing and "raw" mode, or the LeonardoAI's Prompt Magic).
290
+ 2. Native refiner swap inside one single k-sampler. The advantage is that the refiner model can now reuse the base model's momentum (or ODE's history parameters) collected from k-sampling to achieve more coherent sampling. In Automatic1111's high-res fix and ComfyUI's node system, the base model and refiner use two independent k-samplers, which means the momentum is largely wasted, and the sampling continuity is broken. Fooocus uses its own advanced k-diffusion sampling that ensures seamless, native, and continuous swap in a refiner setup. (Update Aug 13: Actually, I discussed this with Automatic1111 several days ago, and it seems that the “native refiner swap inside one single k-sampler” is [merged]( https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12371) into the dev branch of webui. Great!)
291
+ 3. Negative ADM guidance. Because the highest resolution level of XL Base does not have cross attentions, the positive and negative signals for XL's highest resolution level cannot receive enough contrasts during the CFG sampling, causing the results to look a bit plastic or overly smooth in certain cases. Fortunately, since the XL's highest resolution level is still conditioned on image aspect ratios (ADM), we can modify the adm on the positive/negative side to compensate for the lack of CFG contrast in the highest resolution level. (Update Aug 16, the IOS App [Drawing Things](https://apps.apple.com/us/app/draw-things-ai-generation/id6444050820) will support Negative ADM Guidance. Great!)
292
+ 4. We implemented a carefully tuned variation of Section 5.1 of ["Improving Sample Quality of Diffusion Models Using Self-Attention Guidance"](https://arxiv.org/pdf/2210.00939.pdf). The weight is set to very low, but this is Fooocus's final guarantee to make sure that the XL will never yield an overly smooth or plastic appearance (examples [here](https://github.com/lllyasviel/Fooocus/discussions/117#sharpness)). This can almost eliminate all cases for which XL still occasionally produces overly smooth results, even with negative ADM guidance. (Update 2023 Aug 18, the Gaussian kernel of SAG is changed to an anisotropic kernel for better structure preservation and fewer artifacts.)
293
+ 5. We modified the style templates a bit and added the "cinematic-default".
294
+ 6. We tested the "sd_xl_offset_example-lora_1.0.safetensors" and it seems that when the lora weight is below 0.5, the results are always better than XL without lora.
295
+ 7. The parameters of samplers are carefully tuned.
296
+ 8. Because XL uses positional encoding for generation resolution, images generated by several fixed resolutions look a bit better than those from arbitrary resolutions (because the positional encoding is not very good at handling int numbers that are unseen during training). This suggests that the resolutions in UI may be hard coded for best results.
297
+ 9. Separated prompts for two different text encoders seem unnecessary. Separated prompts for the base model and refiner may work, but the effects are random, and we refrain from implementing this.
298
+ 10. The DPM family seems well-suited for XL since XL sometimes generates overly smooth texture, but the DPM family sometimes generates overly dense detail in texture. Their joint effect looks neutral and appealing to human perception.
299
+ 11. A carefully designed system for balancing multiple styles as well as prompt expansion.
300
+ 12. Using automatic1111's method to normalize prompt emphasizing. This significantly improves results when users directly copy prompts from civitai.
301
+ 13. The joint swap system of the refiner now also supports img2img and upscale in a seamless way.
302
+ 14. CFG Scale and TSNR correction (tuned for SDXL) when CFG is bigger than 10.
303
+
304
+ ## Customization
305
+
306
+ After the first time you run Fooocus, a config file will be generated at `Fooocus\config.txt`. This file can be edited to change the model path or default parameters.
307
+
308
+ For example, an edited `Fooocus\config.txt` (this file will be generated after the first launch) may look like this:
309
+
310
+ ```json
311
+ {
312
+ "path_checkpoints": "D:\\Fooocus\\models\\checkpoints",
313
+ "path_loras": "D:\\Fooocus\\models\\loras",
314
+ "path_embeddings": "D:\\Fooocus\\models\\embeddings",
315
+ "path_vae_approx": "D:\\Fooocus\\models\\vae_approx",
316
+ "path_upscale_models": "D:\\Fooocus\\models\\upscale_models",
317
+ "path_inpaint": "D:\\Fooocus\\models\\inpaint",
318
+ "path_controlnet": "D:\\Fooocus\\models\\controlnet",
319
+ "path_clip_vision": "D:\\Fooocus\\models\\clip_vision",
320
+ "path_fooocus_expansion": "D:\\Fooocus\\models\\prompt_expansion\\fooocus_expansion",
321
+ "path_outputs": "D:\\Fooocus\\outputs",
322
+ "default_model": "realisticStockPhoto_v10.safetensors",
323
+ "default_refiner": "",
324
+ "default_loras": [["lora_filename_1.safetensors", 0.5], ["lora_filename_2.safetensors", 0.5]],
325
+ "default_cfg_scale": 3.0,
326
+ "default_sampler": "dpmpp_2m",
327
+ "default_scheduler": "karras",
328
+ "default_negative_prompt": "low quality",
329
+ "default_positive_prompt": "",
330
+ "default_styles": [
331
+ "Fooocus V2",
332
+ "Fooocus Photograph",
333
+ "Fooocus Negative"
334
+ ]
335
+ }
336
+ ```
337
+
338
+ Many other keys, formats, and examples are in `Fooocus\config_modification_tutorial.txt` (this file will be generated after the first launch).
339
+
340
+ Consider twice before you really change the config. If you find yourself breaking things, just delete `Fooocus\config.txt`. Fooocus will go back to default.
341
+
342
+ A safer way is just to try "run_anime.bat" or "run_realistic.bat" - they should already be good enough for different tasks.
343
+
344
+ ~Note that `user_path_config.txt` is deprecated and will be removed soon.~ (Edit: it is already removed.)
345
+
346
+ ### All CMD Flags
347
+
348
+ ```
349
+ entry_with_update.py [-h] [--listen [IP]] [--port PORT]
350
+ [--disable-header-check [ORIGIN]]
351
+ [--web-upload-size WEB_UPLOAD_SIZE]
352
+ [--external-working-path PATH [PATH ...]]
353
+ [--output-path OUTPUT_PATH] [--temp-path TEMP_PATH]
354
+ [--cache-path CACHE_PATH] [--in-browser]
355
+ [--disable-in-browser] [--gpu-device-id DEVICE_ID]
356
+ [--async-cuda-allocation | --disable-async-cuda-allocation]
357
+ [--disable-attention-upcast] [--all-in-fp32 | --all-in-fp16]
358
+ [--unet-in-bf16 | --unet-in-fp16 | --unet-in-fp8-e4m3fn | --unet-in-fp8-e5m2]
359
+ [--vae-in-fp16 | --vae-in-fp32 | --vae-in-bf16]
360
+ [--clip-in-fp8-e4m3fn | --clip-in-fp8-e5m2 | --clip-in-fp16 | --clip-in-fp32]
361
+ [--directml [DIRECTML_DEVICE]] [--disable-ipex-hijack]
362
+ [--preview-option [none,auto,fast,taesd]]
363
+ [--attention-split | --attention-quad | --attention-pytorch]
364
+ [--disable-xformers]
365
+ [--always-gpu | --always-high-vram | --always-normal-vram |
366
+ --always-low-vram | --always-no-vram | --always-cpu]
367
+ [--always-offload-from-vram] [--disable-server-log]
368
+ [--debug-mode] [--is-windows-embedded-python]
369
+ [--disable-server-info] [--share] [--preset PRESET]
370
+ [--language LANGUAGE] [--disable-offload-from-vram]
371
+ [--theme THEME] [--disable-image-log]
372
+ ```
373
+
374
+ ## Advanced Features
375
+
376
+ [Click here to browse the advanced features.](https://github.com/lllyasviel/Fooocus/discussions/117)
377
+
378
+ Fooocus also has many community forks, just like SD-WebUI's [vladmandic/automatic](https://github.com/vladmandic/automatic) and [anapnoe/stable-diffusion-webui-ux](https://github.com/anapnoe/stable-diffusion-webui-ux), for enthusiastic users who want to try!
379
+
380
+ | Fooocus' forks |
381
+ | - |
382
+ | [fenneishi/Fooocus-Control](https://github.com/fenneishi/Fooocus-Control) </br>[runew0lf/RuinedFooocus](https://github.com/runew0lf/RuinedFooocus) </br> [MoonRide303/Fooocus-MRE](https://github.com/MoonRide303/Fooocus-MRE) </br> [metercai/SimpleSDXL](https://github.com/metercai/SimpleSDXL) </br> and so on ... |
383
+
384
+ See also [About Forking and Promotion of Forks](https://github.com/lllyasviel/Fooocus/discussions/699).
385
+
386
+ ## Thanks
387
+
388
+ Special thanks to [twri](https://github.com/twri) and [3Diva](https://github.com/3Diva) and [Marc K3nt3L](https://github.com/K3nt3L) for creating additional SDXL styles available in Fooocus. Thanks [daswer123](https://github.com/daswer123) for contributing the Canvas Zoom!
389
+
390
+ ## Update Log
391
+
392
+ The log is [here](update_log.md).
393
+
394
+ ## Localization/Translation/I18N
395
+
396
+ **We need your help!** Please help translate Fooocus into international languages.
397
+
398
+ You can put json files in the `language` folder to translate the user interface.
399
+
400
+ For example, below is the content of `Fooocus/language/example.json`:
401
+
402
+ ```json
403
+ {
404
+ "Generate": "生成",
405
+ "Input Image": "入力画像",
406
+ "Advanced": "고급",
407
+ "SAI 3D Model": "SAI 3D Modèle"
408
+ }
409
+ ```
410
+
411
+ If you add `--language example` arg, Fooocus will read `Fooocus/language/example.json` to translate the UI.
412
+
413
+ For example, you can edit the ending line of Windows `run.bat` as
414
+
415
+ .\python_embeded\python.exe -s Fooocus\entry_with_update.py --language example
416
+
417
+ Or `run_anime.bat` as
418
+
419
+ .\python_embeded\python.exe -s Fooocus\entry_with_update.py --language example --preset anime
420
+
421
+ Or `run_realistic.bat` as
422
+
423
+ .\python_embeded\python.exe -s Fooocus\entry_with_update.py --language example --preset realistic
424
+
425
+ For practical translation, you may create your own file like `Fooocus/language/jp.json` or `Fooocus/language/cn.json` and then use flag `--language jp` or `--language cn`. Apparently, these files do not exist now. **We need your help to create these files!**
426
+
427
+ Note that if no `--language` is given and at the same time `Fooocus/language/default.json` exists, Fooocus will always load `Fooocus/language/default.json` for translation. By default, the file `Fooocus/language/default.json` does not exist.
args_manager.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import ldm_patched.modules.args_parser as args_parser
2
+
3
+
4
+ args_parser.parser.add_argument("--share", action='store_true', help="Set whether to share on Gradio.")
5
+ args_parser.parser.add_argument("--preset", type=str, default=None, help="Apply specified UI preset.")
6
+
7
+ args_parser.parser.add_argument("--language", type=str, default='default',
8
+ help="Translate UI using json files in [language] folder. "
9
+ "For example, [--language example] will use [language/example.json] for translation.")
10
+
11
+ # For example, https://github.com/lllyasviel/Fooocus/issues/849
12
+ args_parser.parser.add_argument("--disable-offload-from-vram", action="store_true",
13
+ help="Force loading models to vram when the unload can be avoided. "
14
+ "Some Mac users may need this.")
15
+
16
+ args_parser.parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None)
17
+ args_parser.parser.add_argument("--disable-image-log", action='store_true',
18
+ help="Prevent writing images and logs to hard drive.")
19
+
20
+ args_parser.parser.add_argument("--disable-analytics", action='store_true',
21
+ help="Disables analytics for Gradio", default=False)
22
+
23
+ args_parser.parser.set_defaults(
24
+ disable_cuda_malloc=True,
25
+ in_browser=True,
26
+ port=None
27
+ )
28
+
29
+ args_parser.args = args_parser.parser.parse_args()
30
+
31
+ # (Disable by default because of issues like https://github.com/lllyasviel/Fooocus/issues/724)
32
+ args_parser.args.always_offload_from_vram = not args_parser.args.disable_offload_from_vram
33
+
34
+ if args_parser.args.disable_analytics:
35
+ import os
36
+ os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
37
+ if args_parser.args.disable_in_browser:
38
+ args_parser.args.in_browser = False
39
+
40
+ args = args_parser.args
auth-example.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "user": "sitting-duck-1",
4
+ "pass": "very-bad-publicly-known-password-change-it"
5
+ }
6
+ ]
build_launcher.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ win32_root = os.path.dirname(os.path.dirname(__file__))
4
+ python_embeded_path = os.path.join(win32_root, 'python_embeded')
5
+
6
+ is_win32_standalone_build = os.path.exists(python_embeded_path) and os.path.isdir(python_embeded_path)
7
+
8
+ win32_cmd = '''
9
+ .\python_embeded\python.exe -s Fooocus\entry_with_update.py {cmds} %*
10
+ pause
11
+ '''
12
+
13
+
14
+ def build_launcher():
15
+ if not is_win32_standalone_build:
16
+ return
17
+
18
+ presets = [None, 'anime', 'realistic']
19
+
20
+ for preset in presets:
21
+ win32_cmd_preset = win32_cmd.replace('{cmds}', '' if preset is None else f'--preset {preset}')
22
+ bat_path = os.path.join(win32_root, 'run.bat' if preset is None else f'run_{preset}.bat')
23
+ if not os.path.exists(bat_path):
24
+ with open(bat_path, "w", encoding="utf-8") as f:
25
+ f.write(win32_cmd_preset)
26
+ return
css/style.css ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /* based on https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/v1.6.0/style.css */
2
+
3
+ #context-menu{
4
+ z-index:9999;
5
+ position:absolute;
6
+ display:block;
7
+ padding:0px 0;
8
+ border:2px solid #a55000;
9
+ border-radius:8px;
10
+ box-shadow:1px 1px 2px #CE6400;
11
+ width: 200px;
12
+ }
13
+
14
+ .context-menu-items{
15
+ list-style: none;
16
+ margin: 0;
17
+ padding: 0;
18
+ }
19
+
20
+ .context-menu-items a{
21
+ display:block;
22
+ padding:5px;
23
+ cursor:pointer;
24
+ }
25
+
26
+ .context-menu-items a:hover{
27
+ background: #a55000;
28
+ }
29
+
30
+ .canvas-tooltip-info {
31
+ position: absolute;
32
+ top: 28px;
33
+ left: 2px;
34
+ cursor: help;
35
+ background-color: rgba(0, 0, 0, 0.3);
36
+ width: 20px;
37
+ height: 20px;
38
+ border-radius: 50%;
39
+ display: flex;
40
+ align-items: center;
41
+ justify-content: center;
42
+ flex-direction: column;
43
+
44
+ z-index: 100;
45
+ }
46
+
47
+ .canvas-tooltip-info::after {
48
+ content: '';
49
+ display: block;
50
+ width: 2px;
51
+ height: 7px;
52
+ background-color: white;
53
+ margin-top: 2px;
54
+ }
55
+
56
+ .canvas-tooltip-info::before {
57
+ content: '';
58
+ display: block;
59
+ width: 2px;
60
+ height: 2px;
61
+ background-color: white;
62
+ }
63
+
64
+ .canvas-tooltip-content {
65
+ display: none;
66
+ background-color: #f9f9f9;
67
+ color: #333;
68
+ border: 1px solid #ddd;
69
+ padding: 15px;
70
+ position: absolute;
71
+ top: 40px;
72
+ left: 10px;
73
+ width: 250px;
74
+ font-size: 16px;
75
+ opacity: 0;
76
+ border-radius: 8px;
77
+ box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
78
+
79
+ z-index: 100;
80
+ }
81
+
82
+ .canvas-tooltip:hover .canvas-tooltip-content {
83
+ display: block;
84
+ animation: fadeIn 0.5s;
85
+ opacity: 1;
86
+ }
87
+
88
+ @keyframes fadeIn {
89
+ from {opacity: 0;}
90
+ to {opacity: 1;}
91
+ }
92
+
93
+ .styler {
94
+ overflow:inherit !important;
95
+ }
96
+
97
+ .gradio-container{
98
+ overflow: visible;
99
+ }
100
+
101
+ /* fullpage image viewer */
102
+
103
+ #lightboxModal{
104
+ display: none;
105
+ position: fixed;
106
+ z-index: 1001;
107
+ left: 0;
108
+ top: 0;
109
+ width: 100%;
110
+ height: 100%;
111
+ overflow: auto;
112
+ background-color: rgba(20, 20, 20, 0.95);
113
+ user-select: none;
114
+ -webkit-user-select: none;
115
+ flex-direction: column;
116
+ }
117
+
118
+ .modalControls {
119
+ display: flex;
120
+ position: absolute;
121
+ right: 0px;
122
+ left: 0px;
123
+ gap: 1em;
124
+ padding: 1em;
125
+ background-color:rgba(0,0,0,0);
126
+ z-index: 1;
127
+ transition: 0.2s ease background-color;
128
+ }
129
+ .modalControls:hover {
130
+ background-color:rgba(0,0,0,0.9);
131
+ }
132
+ .modalClose {
133
+ margin-left: auto;
134
+ }
135
+ .modalControls span{
136
+ color: white;
137
+ text-shadow: 0px 0px 0.25em black;
138
+ font-size: 35px;
139
+ font-weight: bold;
140
+ cursor: pointer;
141
+ width: 1em;
142
+ }
143
+
144
+ .modalControls span:hover, .modalControls span:focus{
145
+ color: #999;
146
+ text-decoration: none;
147
+ }
148
+
149
+ #lightboxModal > img {
150
+ display: block;
151
+ margin: auto;
152
+ width: auto;
153
+ }
154
+
155
+ #lightboxModal > img.modalImageFullscreen{
156
+ object-fit: contain;
157
+ height: 100%;
158
+ width: 100%;
159
+ min-height: 0;
160
+ }
161
+
162
+ .modalPrev,
163
+ .modalNext {
164
+ cursor: pointer;
165
+ position: absolute;
166
+ top: 50%;
167
+ width: auto;
168
+ padding: 16px;
169
+ margin-top: -50px;
170
+ color: white;
171
+ font-weight: bold;
172
+ font-size: 20px;
173
+ transition: 0.6s ease;
174
+ border-radius: 0 3px 3px 0;
175
+ user-select: none;
176
+ -webkit-user-select: none;
177
+ }
178
+
179
+ .modalNext {
180
+ right: 0;
181
+ border-radius: 3px 0 0 3px;
182
+ }
183
+
184
+ .modalPrev:hover,
185
+ .modalNext:hover {
186
+ background-color: rgba(0, 0, 0, 0.8);
187
+ }
188
+
189
+ #imageARPreview {
190
+ position: absolute;
191
+ top: 0px;
192
+ left: 0px;
193
+ border: 2px solid red;
194
+ background: rgba(255, 0, 0, 0.3);
195
+ z-index: 900;
196
+ pointer-events: none;
197
+ display: none;
198
+ }
199
+
200
+ #stylePreviewOverlay {
201
+ opacity: 0;
202
+ pointer-events: none;
203
+ width: 128px;
204
+ height: 128px;
205
+ position: fixed;
206
+ top: 0px;
207
+ left: 0px;
208
+ border: solid 1px lightgrey;
209
+ transform: translate(-140px, 20px);
210
+ background-size: cover;
211
+ background-position: center;
212
+ background-color: rgba(0, 0, 0, 0.3);
213
+ border-radius: 5px;
214
+ z-index: 100;
215
+ transition: transform 0.1s ease, opacity 0.3s ease;
216
+ }
217
+
218
+ #stylePreviewOverlay.lower-half {
219
+ transform: translate(-140px, -140px);
220
+ }
entry_with_update.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+
4
+
5
+ root = os.path.dirname(os.path.abspath(__file__))
6
+ sys.path.append(root)
7
+ os.chdir(root)
8
+
9
+
10
+ try:
11
+ import pygit2
12
+ pygit2.option(pygit2.GIT_OPT_SET_OWNER_VALIDATION, 0)
13
+
14
+ repo = pygit2.Repository(os.path.abspath(os.path.dirname(__file__)))
15
+
16
+ branch_name = repo.head.shorthand
17
+
18
+ remote_name = 'origin'
19
+ remote = repo.remotes[remote_name]
20
+
21
+ remote.fetch()
22
+
23
+ local_branch_ref = f'refs/heads/{branch_name}'
24
+ local_branch = repo.lookup_reference(local_branch_ref)
25
+
26
+ remote_reference = f'refs/remotes/{remote_name}/{branch_name}'
27
+ remote_commit = repo.revparse_single(remote_reference)
28
+
29
+ merge_result, _ = repo.merge_analysis(remote_commit.id)
30
+
31
+ if merge_result & pygit2.GIT_MERGE_ANALYSIS_UP_TO_DATE:
32
+ print("Already up-to-date")
33
+ elif merge_result & pygit2.GIT_MERGE_ANALYSIS_FASTFORWARD:
34
+ local_branch.set_target(remote_commit.id)
35
+ repo.head.set_target(remote_commit.id)
36
+ repo.checkout_tree(repo.get(remote_commit.id))
37
+ repo.reset(local_branch.target, pygit2.GIT_RESET_HARD)
38
+ print("Fast-forward merge")
39
+ elif merge_result & pygit2.GIT_MERGE_ANALYSIS_NORMAL:
40
+ print("Update failed - Did you modify any file?")
41
+ except Exception as e:
42
+ print('Update failed.')
43
+ print(str(e))
44
+
45
+ print('Update succeeded.')
46
+ from launch import *
environment.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ name: fooocus
2
+ channels:
3
+ - defaults
4
+ dependencies:
5
+ - python=3.10
6
+ - pip=23.0
7
+ - packaging
experiments_expansion.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ from modules.expansion import FooocusExpansion
2
+
3
+ expansion = FooocusExpansion()
4
+
5
+ text = 'a handsome man'
6
+
7
+ for i in range(64):
8
+ print(expansion(text, seed=i))
experiments_face.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import extras.face_crop as cropper
3
+
4
+
5
+ img = cv2.imread('lena.png')
6
+ result = cropper.crop_image(img)
7
+ cv2.imwrite('lena_result.png', result)
experiments_interrogate.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ from extras.interrogate import default_interrogator as default_interrogator_photo
3
+ from extras.wd14tagger import default_interrogator as default_interrogator_anime
4
+
5
+ img = cv2.imread('./test_imgs/red_box.jpg')[:, :, ::-1].copy()
6
+ print(default_interrogator_photo(img))
7
+ img = cv2.imread('./test_imgs/miku.jpg')[:, :, ::-1].copy()
8
+ print(default_interrogator_anime(img))
extras/BLIP/configs/bert_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 12,
16
+ "pad_token_id": 0,
17
+ "type_vocab_size": 2,
18
+ "vocab_size": 30522,
19
+ "encoder_width": 768,
20
+ "add_cross_attention": true
21
+ }
extras/BLIP/configs/caption_coco.yaml ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ image_root: '/export/share/datasets/vision/coco/images/'
2
+ ann_root: 'annotation'
3
+ coco_gt_root: 'annotation/coco_gt'
4
+
5
+ # set pretrained as a file path or an url
6
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
7
+
8
+ # size of vit model; base or large
9
+ vit: 'base'
10
+ vit_grad_ckpt: False
11
+ vit_ckpt_layer: 0
12
+ batch_size: 32
13
+ init_lr: 1e-5
14
+
15
+ # vit: 'large'
16
+ # vit_grad_ckpt: True
17
+ # vit_ckpt_layer: 5
18
+ # batch_size: 16
19
+ # init_lr: 2e-6
20
+
21
+ image_size: 384
22
+
23
+ # generation configs
24
+ max_length: 20
25
+ min_length: 5
26
+ num_beams: 3
27
+ prompt: 'a picture of '
28
+
29
+ # optimizer
30
+ weight_decay: 0.05
31
+ min_lr: 0
32
+ max_epoch: 5
33
+
extras/BLIP/configs/med_config.json ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "hidden_act": "gelu",
7
+ "hidden_dropout_prob": 0.1,
8
+ "hidden_size": 768,
9
+ "initializer_range": 0.02,
10
+ "intermediate_size": 3072,
11
+ "layer_norm_eps": 1e-12,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "bert",
14
+ "num_attention_heads": 12,
15
+ "num_hidden_layers": 12,
16
+ "pad_token_id": 0,
17
+ "type_vocab_size": 2,
18
+ "vocab_size": 30524,
19
+ "encoder_width": 768,
20
+ "add_cross_attention": true
21
+ }
extras/BLIP/configs/nlvr.yaml ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ image_root: '/export/share/datasets/vision/NLVR2/'
2
+ ann_root: 'annotation'
3
+
4
+ # set pretrained as a file path or an url
5
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_nlvr.pth'
6
+
7
+ #size of vit model; base or large
8
+ vit: 'base'
9
+ batch_size_train: 16
10
+ batch_size_test: 64
11
+ vit_grad_ckpt: False
12
+ vit_ckpt_layer: 0
13
+ max_epoch: 15
14
+
15
+ image_size: 384
16
+
17
+ # optimizer
18
+ weight_decay: 0.05
19
+ init_lr: 3e-5
20
+ min_lr: 0
21
+
extras/BLIP/configs/nocaps.yaml ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ image_root: '/export/share/datasets/vision/nocaps/'
2
+ ann_root: 'annotation'
3
+
4
+ # set pretrained as a file path or an url
5
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
6
+
7
+ vit: 'base'
8
+ batch_size: 32
9
+
10
+ image_size: 384
11
+
12
+ max_length: 20
13
+ min_length: 5
14
+ num_beams: 3
15
+ prompt: 'a picture of '
extras/BLIP/configs/pretrain.yaml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ train_file: ['/export/share/junnan-li/VL_pretrain/annotation/coco_karpathy_train.json',
2
+ '/export/share/junnan-li/VL_pretrain/annotation/vg_caption.json',
3
+ ]
4
+ laion_path: ''
5
+
6
+ # size of vit model; base or large
7
+ vit: 'base'
8
+ vit_grad_ckpt: False
9
+ vit_ckpt_layer: 0
10
+
11
+ image_size: 224
12
+ batch_size: 75
13
+
14
+ queue_size: 57600
15
+ alpha: 0.4
16
+
17
+ # optimizer
18
+ weight_decay: 0.05
19
+ init_lr: 3e-4
20
+ min_lr: 1e-6
21
+ warmup_lr: 1e-6
22
+ lr_decay_rate: 0.9
23
+ max_epoch: 20
24
+ warmup_steps: 3000
25
+
26
+
27
+
extras/BLIP/configs/retrieval_coco.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ image_root: '/export/share/datasets/vision/coco/images/'
2
+ ann_root: 'annotation'
3
+ dataset: 'coco'
4
+
5
+ # set pretrained as a file path or an url
6
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
7
+
8
+ # size of vit model; base or large
9
+
10
+ vit: 'base'
11
+ batch_size_train: 32
12
+ batch_size_test: 64
13
+ vit_grad_ckpt: True
14
+ vit_ckpt_layer: 4
15
+ init_lr: 1e-5
16
+
17
+ # vit: 'large'
18
+ # batch_size_train: 16
19
+ # batch_size_test: 32
20
+ # vit_grad_ckpt: True
21
+ # vit_ckpt_layer: 12
22
+ # init_lr: 5e-6
23
+
24
+ image_size: 384
25
+ queue_size: 57600
26
+ alpha: 0.4
27
+ k_test: 256
28
+ negative_all_rank: True
29
+
30
+ # optimizer
31
+ weight_decay: 0.05
32
+ min_lr: 0
33
+ max_epoch: 6
34
+
extras/BLIP/configs/retrieval_flickr.yaml ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ image_root: '/export/share/datasets/vision/flickr30k/'
2
+ ann_root: 'annotation'
3
+ dataset: 'flickr'
4
+
5
+ # set pretrained as a file path or an url
6
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_flickr.pth'
7
+
8
+ # size of vit model; base or large
9
+
10
+ vit: 'base'
11
+ batch_size_train: 32
12
+ batch_size_test: 64
13
+ vit_grad_ckpt: True
14
+ vit_ckpt_layer: 4
15
+ init_lr: 1e-5
16
+
17
+ # vit: 'large'
18
+ # batch_size_train: 16
19
+ # batch_size_test: 32
20
+ # vit_grad_ckpt: True
21
+ # vit_ckpt_layer: 10
22
+ # init_lr: 5e-6
23
+
24
+ image_size: 384
25
+ queue_size: 57600
26
+ alpha: 0.4
27
+ k_test: 128
28
+ negative_all_rank: False
29
+
30
+ # optimizer
31
+ weight_decay: 0.05
32
+ min_lr: 0
33
+ max_epoch: 6
34
+
extras/BLIP/configs/retrieval_msrvtt.yaml ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ video_root: '/export/share/dongxuli/data/msrvtt_retrieval/videos'
2
+ ann_root: 'annotation'
3
+
4
+ # set pretrained as a file path or an url
5
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
6
+
7
+ # size of vit model; base or large
8
+ vit: 'base'
9
+ batch_size: 64
10
+ k_test: 128
11
+ image_size: 384
12
+ num_frm_test: 8
extras/BLIP/configs/vqa.yaml ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ vqa_root: '/export/share/datasets/vision/VQA/Images/mscoco/' #followed by train2014/
2
+ vg_root: '/export/share/datasets/vision/visual-genome/' #followed by image/
3
+ train_files: ['vqa_train','vqa_val','vg_qa']
4
+ ann_root: 'annotation'
5
+
6
+ # set pretrained as a file path or an url
7
+ pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'
8
+
9
+ # size of vit model; base or large
10
+ vit: 'base'
11
+ batch_size_train: 16
12
+ batch_size_test: 32
13
+ vit_grad_ckpt: False
14
+ vit_ckpt_layer: 0
15
+ init_lr: 2e-5
16
+
17
+ image_size: 480
18
+
19
+ k_test: 128
20
+ inference: 'rank'
21
+
22
+ # optimizer
23
+ weight_decay: 0.05
24
+ min_lr: 0
25
+ max_epoch: 10
extras/BLIP/models/bert_tokenizer/config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "gradient_checkpointing": false,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "transformers_version": "4.6.0.dev0",
20
+ "type_vocab_size": 2,
21
+ "use_cache": true,
22
+ "vocab_size": 30522
23
+ }
extras/BLIP/models/bert_tokenizer/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
extras/BLIP/models/bert_tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "do_lower_case": true
3
+ }
extras/BLIP/models/bert_tokenizer/vocab.txt ADDED
The diff for this file is too large to render. See raw diff
 
extras/BLIP/models/blip.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ '''
8
+ import warnings
9
+ warnings.filterwarnings("ignore")
10
+
11
+ from extras.BLIP.models.vit import VisionTransformer, interpolate_pos_embed
12
+ from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
13
+ from transformers import BertTokenizer
14
+
15
+ import torch
16
+ from torch import nn
17
+ import torch.nn.functional as F
18
+
19
+ import os
20
+ from urllib.parse import urlparse
21
+ from timm.models.hub import download_cached_file
22
+
23
+ class BLIP_Base(nn.Module):
24
+ def __init__(self,
25
+ med_config = 'configs/med_config.json',
26
+ image_size = 224,
27
+ vit = 'base',
28
+ vit_grad_ckpt = False,
29
+ vit_ckpt_layer = 0,
30
+ ):
31
+ """
32
+ Args:
33
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
34
+ image_size (int): input image size
35
+ vit (str): model size of vision transformer
36
+ """
37
+ super().__init__()
38
+
39
+ self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
40
+ self.tokenizer = init_tokenizer()
41
+ med_config = BertConfig.from_json_file(med_config)
42
+ med_config.encoder_width = vision_width
43
+ self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
44
+
45
+
46
+ def forward(self, image, caption, mode):
47
+
48
+ assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal"
49
+ text = self.tokenizer(caption, return_tensors="pt").to(image.device)
50
+
51
+ if mode=='image':
52
+ # return image features
53
+ image_embeds = self.visual_encoder(image)
54
+ return image_embeds
55
+
56
+ elif mode=='text':
57
+ # return text features
58
+ text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
59
+ return_dict = True, mode = 'text')
60
+ return text_output.last_hidden_state
61
+
62
+ elif mode=='multimodal':
63
+ # return multimodel features
64
+ image_embeds = self.visual_encoder(image)
65
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
66
+
67
+ text.input_ids[:,0] = self.tokenizer.enc_token_id
68
+ output = self.text_encoder(text.input_ids,
69
+ attention_mask = text.attention_mask,
70
+ encoder_hidden_states = image_embeds,
71
+ encoder_attention_mask = image_atts,
72
+ return_dict = True,
73
+ )
74
+ return output.last_hidden_state
75
+
76
+
77
+
78
+ class BLIP_Decoder(nn.Module):
79
+ def __init__(self,
80
+ med_config = 'configs/med_config.json',
81
+ image_size = 384,
82
+ vit = 'base',
83
+ vit_grad_ckpt = False,
84
+ vit_ckpt_layer = 0,
85
+ prompt = 'a picture of ',
86
+ ):
87
+ """
88
+ Args:
89
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
90
+ image_size (int): input image size
91
+ vit (str): model size of vision transformer
92
+ """
93
+ super().__init__()
94
+
95
+ self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
96
+ self.tokenizer = init_tokenizer()
97
+ med_config = BertConfig.from_json_file(med_config)
98
+ med_config.encoder_width = vision_width
99
+ self.text_decoder = BertLMHeadModel(config=med_config)
100
+
101
+ self.prompt = prompt
102
+ self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
103
+
104
+
105
+ def forward(self, image, caption):
106
+
107
+ image_embeds = self.visual_encoder(image)
108
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
109
+
110
+ text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device)
111
+
112
+ text.input_ids[:,0] = self.tokenizer.bos_token_id
113
+
114
+ decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)
115
+ decoder_targets[:,:self.prompt_length] = -100
116
+
117
+ decoder_output = self.text_decoder(text.input_ids,
118
+ attention_mask = text.attention_mask,
119
+ encoder_hidden_states = image_embeds,
120
+ encoder_attention_mask = image_atts,
121
+ labels = decoder_targets,
122
+ return_dict = True,
123
+ )
124
+ loss_lm = decoder_output.loss
125
+
126
+ return loss_lm
127
+
128
+ def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
129
+ image_embeds = self.visual_encoder(image)
130
+
131
+ if not sample:
132
+ image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
133
+
134
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
135
+ model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
136
+
137
+ prompt = [self.prompt] * image.size(0)
138
+ input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device)
139
+ input_ids[:,0] = self.tokenizer.bos_token_id
140
+ input_ids = input_ids[:, :-1]
141
+
142
+ if sample:
143
+ #nucleus sampling
144
+ outputs = self.text_decoder.generate(input_ids=input_ids,
145
+ max_length=max_length,
146
+ min_length=min_length,
147
+ do_sample=True,
148
+ top_p=top_p,
149
+ num_return_sequences=1,
150
+ eos_token_id=self.tokenizer.sep_token_id,
151
+ pad_token_id=self.tokenizer.pad_token_id,
152
+ repetition_penalty=1.1,
153
+ **model_kwargs)
154
+ else:
155
+ #beam search
156
+ outputs = self.text_decoder.generate(input_ids=input_ids,
157
+ max_length=max_length,
158
+ min_length=min_length,
159
+ num_beams=num_beams,
160
+ eos_token_id=self.tokenizer.sep_token_id,
161
+ pad_token_id=self.tokenizer.pad_token_id,
162
+ repetition_penalty=repetition_penalty,
163
+ **model_kwargs)
164
+
165
+ captions = []
166
+ for output in outputs:
167
+ caption = self.tokenizer.decode(output, skip_special_tokens=True)
168
+ captions.append(caption[len(self.prompt):])
169
+ return captions
170
+
171
+
172
+ def blip_decoder(pretrained='',**kwargs):
173
+ model = BLIP_Decoder(**kwargs)
174
+ if pretrained:
175
+ model,msg = load_checkpoint(model,pretrained)
176
+ assert(len(msg.missing_keys)==0)
177
+ return model
178
+
179
+ def blip_feature_extractor(pretrained='',**kwargs):
180
+ model = BLIP_Base(**kwargs)
181
+ if pretrained:
182
+ model,msg = load_checkpoint(model,pretrained)
183
+ assert(len(msg.missing_keys)==0)
184
+ return model
185
+
186
+ def init_tokenizer():
187
+ tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "bert_tokenizer")
188
+ tokenizer = BertTokenizer.from_pretrained(tokenizer_path)
189
+ tokenizer.add_special_tokens({'bos_token':'[DEC]'})
190
+ tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})
191
+ tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]
192
+ return tokenizer
193
+
194
+
195
+ def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
196
+
197
+ assert vit in ['base', 'large'], "vit parameter must be base or large"
198
+ if vit=='base':
199
+ vision_width = 768
200
+ visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12,
201
+ num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
202
+ drop_path_rate=0 or drop_path_rate
203
+ )
204
+ elif vit=='large':
205
+ vision_width = 1024
206
+ visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24,
207
+ num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
208
+ drop_path_rate=0.1 or drop_path_rate
209
+ )
210
+ return visual_encoder, vision_width
211
+
212
+ def is_url(url_or_filename):
213
+ parsed = urlparse(url_or_filename)
214
+ return parsed.scheme in ("http", "https")
215
+
216
+ def load_checkpoint(model,url_or_filename):
217
+ if is_url(url_or_filename):
218
+ cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
219
+ checkpoint = torch.load(cached_file, map_location='cpu')
220
+ elif os.path.isfile(url_or_filename):
221
+ checkpoint = torch.load(url_or_filename, map_location='cpu')
222
+ else:
223
+ raise RuntimeError('checkpoint url or path is invalid')
224
+
225
+ state_dict = checkpoint['model']
226
+
227
+ state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
228
+ if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
229
+ state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
230
+ model.visual_encoder_m)
231
+ for key in model.state_dict().keys():
232
+ if key in state_dict.keys():
233
+ if state_dict[key].shape!=model.state_dict()[key].shape:
234
+ del state_dict[key]
235
+
236
+ msg = model.load_state_dict(state_dict,strict=False)
237
+ print('load checkpoint from %s'%url_or_filename)
238
+ return model,msg
239
+
extras/BLIP/models/blip_itm.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from extras.BLIP.models.med import BertConfig, BertModel
2
+ from transformers import BertTokenizer
3
+
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+
8
+ from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
9
+
10
+ class BLIP_ITM(nn.Module):
11
+ def __init__(self,
12
+ med_config = 'configs/med_config.json',
13
+ image_size = 384,
14
+ vit = 'base',
15
+ vit_grad_ckpt = False,
16
+ vit_ckpt_layer = 0,
17
+ embed_dim = 256,
18
+ ):
19
+ """
20
+ Args:
21
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
22
+ image_size (int): input image size
23
+ vit (str): model size of vision transformer
24
+ """
25
+ super().__init__()
26
+
27
+ self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
28
+ self.tokenizer = init_tokenizer()
29
+ med_config = BertConfig.from_json_file(med_config)
30
+ med_config.encoder_width = vision_width
31
+ self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
32
+
33
+ text_width = self.text_encoder.config.hidden_size
34
+
35
+ self.vision_proj = nn.Linear(vision_width, embed_dim)
36
+ self.text_proj = nn.Linear(text_width, embed_dim)
37
+
38
+ self.itm_head = nn.Linear(text_width, 2)
39
+
40
+
41
+ def forward(self, image, caption, match_head='itm'):
42
+
43
+ image_embeds = self.visual_encoder(image)
44
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
45
+
46
+ text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
47
+ return_tensors="pt").to(image.device)
48
+
49
+
50
+ if match_head=='itm':
51
+ output = self.text_encoder(text.input_ids,
52
+ attention_mask = text.attention_mask,
53
+ encoder_hidden_states = image_embeds,
54
+ encoder_attention_mask = image_atts,
55
+ return_dict = True,
56
+ )
57
+ itm_output = self.itm_head(output.last_hidden_state[:,0,:])
58
+ return itm_output
59
+
60
+ elif match_head=='itc':
61
+ text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
62
+ return_dict = True, mode = 'text')
63
+ image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
64
+ text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
65
+
66
+ sim = image_feat @ text_feat.t()
67
+ return sim
68
+
69
+
70
+ def blip_itm(pretrained='',**kwargs):
71
+ model = BLIP_ITM(**kwargs)
72
+ if pretrained:
73
+ model,msg = load_checkpoint(model,pretrained)
74
+ assert(len(msg.missing_keys)==0)
75
+ return model
76
+
extras/BLIP/models/blip_nlvr.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from extras.BLIP.models.med import BertConfig
2
+ from extras.BLIP.models.nlvr_encoder import BertModel
3
+ from extras.BLIP.models.vit import interpolate_pos_embed
4
+ from extras.BLIP.models.blip import create_vit, init_tokenizer, is_url
5
+
6
+ from timm.models.hub import download_cached_file
7
+
8
+ import torch
9
+ from torch import nn
10
+ import torch.nn.functional as F
11
+ from transformers import BertTokenizer
12
+ import numpy as np
13
+ import os
14
+
15
+
16
+ class BLIP_NLVR(nn.Module):
17
+ def __init__(self,
18
+ med_config = 'configs/med_config.json',
19
+ image_size = 480,
20
+ vit = 'base',
21
+ vit_grad_ckpt = False,
22
+ vit_ckpt_layer = 0,
23
+ ):
24
+ """
25
+ Args:
26
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
27
+ image_size (int): input image size
28
+ vit (str): model size of vision transformer
29
+ """
30
+ super().__init__()
31
+
32
+ self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
33
+ self.tokenizer = init_tokenizer()
34
+ med_config = BertConfig.from_json_file(med_config)
35
+ med_config.encoder_width = vision_width
36
+ self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
37
+
38
+ self.cls_head = nn.Sequential(
39
+ nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
40
+ nn.ReLU(),
41
+ nn.Linear(self.text_encoder.config.hidden_size, 2)
42
+ )
43
+
44
+ def forward(self, image, text, targets, train=True):
45
+
46
+ image_embeds = self.visual_encoder(image)
47
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
48
+ image0_embeds, image1_embeds = torch.split(image_embeds,targets.size(0))
49
+
50
+ text = self.tokenizer(text, padding='longest', return_tensors="pt").to(image.device)
51
+ text.input_ids[:,0] = self.tokenizer.enc_token_id
52
+
53
+ output = self.text_encoder(text.input_ids,
54
+ attention_mask = text.attention_mask,
55
+ encoder_hidden_states = [image0_embeds,image1_embeds],
56
+ encoder_attention_mask = [image_atts[:image0_embeds.size(0)],
57
+ image_atts[image0_embeds.size(0):]],
58
+ return_dict = True,
59
+ )
60
+ hidden_state = output.last_hidden_state[:,0,:]
61
+ prediction = self.cls_head(hidden_state)
62
+
63
+ if train:
64
+ loss = F.cross_entropy(prediction, targets)
65
+ return loss
66
+ else:
67
+ return prediction
68
+
69
+ def blip_nlvr(pretrained='',**kwargs):
70
+ model = BLIP_NLVR(**kwargs)
71
+ if pretrained:
72
+ model,msg = load_checkpoint(model,pretrained)
73
+ print("missing keys:")
74
+ print(msg.missing_keys)
75
+ return model
76
+
77
+
78
+ def load_checkpoint(model,url_or_filename):
79
+ if is_url(url_or_filename):
80
+ cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
81
+ checkpoint = torch.load(cached_file, map_location='cpu')
82
+ elif os.path.isfile(url_or_filename):
83
+ checkpoint = torch.load(url_or_filename, map_location='cpu')
84
+ else:
85
+ raise RuntimeError('checkpoint url or path is invalid')
86
+ state_dict = checkpoint['model']
87
+
88
+ state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder)
89
+
90
+ for key in list(state_dict.keys()):
91
+ if 'crossattention.self.' in key:
92
+ new_key0 = key.replace('self','self0')
93
+ new_key1 = key.replace('self','self1')
94
+ state_dict[new_key0] = state_dict[key]
95
+ state_dict[new_key1] = state_dict[key]
96
+ elif 'crossattention.output.dense.' in key:
97
+ new_key0 = key.replace('dense','dense0')
98
+ new_key1 = key.replace('dense','dense1')
99
+ state_dict[new_key0] = state_dict[key]
100
+ state_dict[new_key1] = state_dict[key]
101
+
102
+ msg = model.load_state_dict(state_dict,strict=False)
103
+ print('load checkpoint from %s'%url_or_filename)
104
+ return model,msg
105
+
extras/BLIP/models/blip_pretrain.py ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ '''
8
+ from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
9
+ from transformers import BertTokenizer
10
+ import transformers
11
+ transformers.logging.set_verbosity_error()
12
+
13
+ import torch
14
+ from torch import nn
15
+ import torch.nn.functional as F
16
+
17
+ from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
18
+
19
+ class BLIP_Pretrain(nn.Module):
20
+ def __init__(self,
21
+ med_config = 'configs/bert_config.json',
22
+ image_size = 224,
23
+ vit = 'base',
24
+ vit_grad_ckpt = False,
25
+ vit_ckpt_layer = 0,
26
+ embed_dim = 256,
27
+ queue_size = 57600,
28
+ momentum = 0.995,
29
+ ):
30
+ """
31
+ Args:
32
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
33
+ image_size (int): input image size
34
+ vit (str): model size of vision transformer
35
+ """
36
+ super().__init__()
37
+
38
+ self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0)
39
+
40
+ if vit=='base':
41
+ checkpoint = torch.hub.load_state_dict_from_url(
42
+ url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
43
+ map_location="cpu", check_hash=True)
44
+ state_dict = checkpoint["model"]
45
+ msg = self.visual_encoder.load_state_dict(state_dict,strict=False)
46
+ elif vit=='large':
47
+ from timm.models.helpers import load_custom_pretrained
48
+ from timm.models.vision_transformer import default_cfgs
49
+ load_custom_pretrained(self.visual_encoder,default_cfgs['vit_large_patch16_224_in21k'])
50
+
51
+ self.tokenizer = init_tokenizer()
52
+ encoder_config = BertConfig.from_json_file(med_config)
53
+ encoder_config.encoder_width = vision_width
54
+ self.text_encoder = BertModel.from_pretrained('bert-base-uncased',config=encoder_config, add_pooling_layer=False)
55
+ self.text_encoder.resize_token_embeddings(len(self.tokenizer))
56
+
57
+ text_width = self.text_encoder.config.hidden_size
58
+
59
+ self.vision_proj = nn.Linear(vision_width, embed_dim)
60
+ self.text_proj = nn.Linear(text_width, embed_dim)
61
+
62
+ self.itm_head = nn.Linear(text_width, 2)
63
+
64
+ # create momentum encoders
65
+ self.visual_encoder_m, vision_width = create_vit(vit,image_size)
66
+ self.vision_proj_m = nn.Linear(vision_width, embed_dim)
67
+ self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False)
68
+ self.text_proj_m = nn.Linear(text_width, embed_dim)
69
+
70
+ self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
71
+ [self.vision_proj,self.vision_proj_m],
72
+ [self.text_encoder,self.text_encoder_m],
73
+ [self.text_proj,self.text_proj_m],
74
+ ]
75
+ self.copy_params()
76
+
77
+ # create the queue
78
+ self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
79
+ self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
80
+ self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))
81
+
82
+ self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
83
+ self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
84
+
85
+ self.queue_size = queue_size
86
+ self.momentum = momentum
87
+ self.temp = nn.Parameter(0.07*torch.ones([]))
88
+
89
+ # create the decoder
90
+ decoder_config = BertConfig.from_json_file(med_config)
91
+ decoder_config.encoder_width = vision_width
92
+ self.text_decoder = BertLMHeadModel.from_pretrained('bert-base-uncased',config=decoder_config)
93
+ self.text_decoder.resize_token_embeddings(len(self.tokenizer))
94
+ tie_encoder_decoder_weights(self.text_encoder,self.text_decoder.bert,'','/attention')
95
+
96
+
97
+ def forward(self, image, caption, alpha):
98
+ with torch.no_grad():
99
+ self.temp.clamp_(0.001,0.5)
100
+
101
+ image_embeds = self.visual_encoder(image)
102
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
103
+ image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
104
+
105
+ text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=30,
106
+ return_tensors="pt").to(image.device)
107
+ text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
108
+ return_dict = True, mode = 'text')
109
+ text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
110
+
111
+ # get momentum features
112
+ with torch.no_grad():
113
+ self._momentum_update()
114
+ image_embeds_m = self.visual_encoder_m(image)
115
+ image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
116
+ image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
117
+
118
+ text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
119
+ return_dict = True, mode = 'text')
120
+ text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
121
+ text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
122
+
123
+ sim_i2t_m = image_feat_m @ text_feat_all / self.temp
124
+ sim_t2i_m = text_feat_m @ image_feat_all / self.temp
125
+
126
+ sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
127
+ sim_targets.fill_diagonal_(1)
128
+
129
+ sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
130
+ sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
131
+
132
+ sim_i2t = image_feat @ text_feat_all / self.temp
133
+ sim_t2i = text_feat @ image_feat_all / self.temp
134
+
135
+ loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
136
+ loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
137
+
138
+ loss_ita = (loss_i2t+loss_t2i)/2
139
+
140
+ self._dequeue_and_enqueue(image_feat_m, text_feat_m)
141
+
142
+ ###============== Image-text Matching ===================###
143
+ encoder_input_ids = text.input_ids.clone()
144
+ encoder_input_ids[:,0] = self.tokenizer.enc_token_id
145
+
146
+ # forward the positve image-text pair
147
+ bs = image.size(0)
148
+ output_pos = self.text_encoder(encoder_input_ids,
149
+ attention_mask = text.attention_mask,
150
+ encoder_hidden_states = image_embeds,
151
+ encoder_attention_mask = image_atts,
152
+ return_dict = True,
153
+ )
154
+ with torch.no_grad():
155
+ weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)+1e-4
156
+ weights_t2i.fill_diagonal_(0)
157
+ weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)+1e-4
158
+ weights_i2t.fill_diagonal_(0)
159
+
160
+ # select a negative image for each text
161
+ image_embeds_neg = []
162
+ for b in range(bs):
163
+ neg_idx = torch.multinomial(weights_t2i[b], 1).item()
164
+ image_embeds_neg.append(image_embeds[neg_idx])
165
+ image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
166
+
167
+ # select a negative text for each image
168
+ text_ids_neg = []
169
+ text_atts_neg = []
170
+ for b in range(bs):
171
+ neg_idx = torch.multinomial(weights_i2t[b], 1).item()
172
+ text_ids_neg.append(encoder_input_ids[neg_idx])
173
+ text_atts_neg.append(text.attention_mask[neg_idx])
174
+
175
+ text_ids_neg = torch.stack(text_ids_neg,dim=0)
176
+ text_atts_neg = torch.stack(text_atts_neg,dim=0)
177
+
178
+ text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
179
+ text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
180
+
181
+ image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
182
+ image_atts_all = torch.cat([image_atts,image_atts],dim=0)
183
+
184
+ output_neg = self.text_encoder(text_ids_all,
185
+ attention_mask = text_atts_all,
186
+ encoder_hidden_states = image_embeds_all,
187
+ encoder_attention_mask = image_atts_all,
188
+ return_dict = True,
189
+ )
190
+
191
+ vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
192
+ vl_output = self.itm_head(vl_embeddings)
193
+
194
+ itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
195
+ dim=0).to(image.device)
196
+ loss_itm = F.cross_entropy(vl_output, itm_labels)
197
+
198
+ ##================= LM ========================##
199
+ decoder_input_ids = text.input_ids.clone()
200
+ decoder_input_ids[:,0] = self.tokenizer.bos_token_id
201
+ decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100)
202
+
203
+ decoder_output = self.text_decoder(decoder_input_ids,
204
+ attention_mask = text.attention_mask,
205
+ encoder_hidden_states = image_embeds,
206
+ encoder_attention_mask = image_atts,
207
+ labels = decoder_targets,
208
+ return_dict = True,
209
+ )
210
+
211
+ loss_lm = decoder_output.loss
212
+ return loss_ita, loss_itm, loss_lm
213
+
214
+
215
+
216
+ @torch.no_grad()
217
+ def copy_params(self):
218
+ for model_pair in self.model_pairs:
219
+ for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
220
+ param_m.data.copy_(param.data) # initialize
221
+ param_m.requires_grad = False # not update by gradient
222
+
223
+
224
+ @torch.no_grad()
225
+ def _momentum_update(self):
226
+ for model_pair in self.model_pairs:
227
+ for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
228
+ param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
229
+
230
+
231
+ @torch.no_grad()
232
+ def _dequeue_and_enqueue(self, image_feat, text_feat):
233
+ # gather keys before updating queue
234
+ image_feats = concat_all_gather(image_feat)
235
+ text_feats = concat_all_gather(text_feat)
236
+
237
+ batch_size = image_feats.shape[0]
238
+
239
+ ptr = int(self.queue_ptr)
240
+ assert self.queue_size % batch_size == 0 # for simplicity
241
+
242
+ # replace the keys at ptr (dequeue and enqueue)
243
+ self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
244
+ self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
245
+ ptr = (ptr + batch_size) % self.queue_size # move pointer
246
+
247
+ self.queue_ptr[0] = ptr
248
+
249
+
250
+ def blip_pretrain(**kwargs):
251
+ model = BLIP_Pretrain(**kwargs)
252
+ return model
253
+
254
+
255
+ @torch.no_grad()
256
+ def concat_all_gather(tensor):
257
+ """
258
+ Performs all_gather operation on the provided tensors.
259
+ *** Warning ***: torch.distributed.all_gather has no gradient.
260
+ """
261
+ tensors_gather = [torch.ones_like(tensor)
262
+ for _ in range(torch.distributed.get_world_size())]
263
+ torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
264
+
265
+ output = torch.cat(tensors_gather, dim=0)
266
+ return output
267
+
268
+
269
+ from typing import List
270
+ def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
271
+ uninitialized_encoder_weights: List[str] = []
272
+ if decoder.__class__ != encoder.__class__:
273
+ print(
274
+ f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
275
+ )
276
+
277
+ def tie_encoder_to_decoder_recursively(
278
+ decoder_pointer: nn.Module,
279
+ encoder_pointer: nn.Module,
280
+ module_name: str,
281
+ uninitialized_encoder_weights: List[str],
282
+ skip_key: str,
283
+ depth=0,
284
+ ):
285
+ assert isinstance(decoder_pointer, nn.Module) and isinstance(
286
+ encoder_pointer, nn.Module
287
+ ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
288
+ if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
289
+ assert hasattr(encoder_pointer, "weight")
290
+ encoder_pointer.weight = decoder_pointer.weight
291
+ if hasattr(decoder_pointer, "bias"):
292
+ assert hasattr(encoder_pointer, "bias")
293
+ encoder_pointer.bias = decoder_pointer.bias
294
+ print(module_name+' is tied')
295
+ return
296
+
297
+ encoder_modules = encoder_pointer._modules
298
+ decoder_modules = decoder_pointer._modules
299
+ if len(decoder_modules) > 0:
300
+ assert (
301
+ len(encoder_modules) > 0
302
+ ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
303
+
304
+ all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
305
+ encoder_layer_pos = 0
306
+ for name, module in decoder_modules.items():
307
+ if name.isdigit():
308
+ encoder_name = str(int(name) + encoder_layer_pos)
309
+ decoder_name = name
310
+ if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
311
+ encoder_modules
312
+ ) != len(decoder_modules):
313
+ # this can happen if the name corresponds to the position in a list module list of layers
314
+ # in this case the decoder has added a cross-attention that the encoder does not have
315
+ # thus skip this step and subtract one layer pos from encoder
316
+ encoder_layer_pos -= 1
317
+ continue
318
+ elif name not in encoder_modules:
319
+ continue
320
+ elif depth > 500:
321
+ raise ValueError(
322
+ "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
323
+ )
324
+ else:
325
+ decoder_name = encoder_name = name
326
+ tie_encoder_to_decoder_recursively(
327
+ decoder_modules[decoder_name],
328
+ encoder_modules[encoder_name],
329
+ module_name + "/" + name,
330
+ uninitialized_encoder_weights,
331
+ skip_key,
332
+ depth=depth + 1,
333
+ )
334
+ all_encoder_weights.remove(module_name + "/" + encoder_name)
335
+
336
+ uninitialized_encoder_weights += list(all_encoder_weights)
337
+
338
+ # tie weights recursively
339
+ tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)
extras/BLIP/models/blip_retrieval.py ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from extras.BLIP.models.med import BertConfig, BertModel
2
+ from transformers import BertTokenizer
3
+
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+
8
+ from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
9
+
10
+ class BLIP_Retrieval(nn.Module):
11
+ def __init__(self,
12
+ med_config = 'configs/med_config.json',
13
+ image_size = 384,
14
+ vit = 'base',
15
+ vit_grad_ckpt = False,
16
+ vit_ckpt_layer = 0,
17
+ embed_dim = 256,
18
+ queue_size = 57600,
19
+ momentum = 0.995,
20
+ negative_all_rank = False,
21
+ ):
22
+ """
23
+ Args:
24
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
25
+ image_size (int): input image size
26
+ vit (str): model size of vision transformer
27
+ """
28
+ super().__init__()
29
+
30
+ self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
31
+ self.tokenizer = init_tokenizer()
32
+ med_config = BertConfig.from_json_file(med_config)
33
+ med_config.encoder_width = vision_width
34
+ self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)
35
+
36
+ text_width = self.text_encoder.config.hidden_size
37
+
38
+ self.vision_proj = nn.Linear(vision_width, embed_dim)
39
+ self.text_proj = nn.Linear(text_width, embed_dim)
40
+
41
+ self.itm_head = nn.Linear(text_width, 2)
42
+
43
+ # create momentum encoders
44
+ self.visual_encoder_m, vision_width = create_vit(vit,image_size)
45
+ self.vision_proj_m = nn.Linear(vision_width, embed_dim)
46
+ self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False)
47
+ self.text_proj_m = nn.Linear(text_width, embed_dim)
48
+
49
+ self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
50
+ [self.vision_proj,self.vision_proj_m],
51
+ [self.text_encoder,self.text_encoder_m],
52
+ [self.text_proj,self.text_proj_m],
53
+ ]
54
+ self.copy_params()
55
+
56
+ # create the queue
57
+ self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
58
+ self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
59
+ self.register_buffer("idx_queue", torch.full((1,queue_size),-100))
60
+ self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long))
61
+
62
+ self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
63
+ self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
64
+
65
+ self.queue_size = queue_size
66
+ self.momentum = momentum
67
+ self.temp = nn.Parameter(0.07*torch.ones([]))
68
+
69
+ self.negative_all_rank = negative_all_rank
70
+
71
+
72
+ def forward(self, image, caption, alpha, idx):
73
+ with torch.no_grad():
74
+ self.temp.clamp_(0.001,0.5)
75
+
76
+ image_embeds = self.visual_encoder(image)
77
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
78
+ image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)
79
+
80
+ text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35,
81
+ return_tensors="pt").to(image.device)
82
+
83
+ text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,
84
+ return_dict = True, mode = 'text')
85
+ text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)
86
+
87
+ ###============== Image-text Contrastive Learning ===================###
88
+ idx = idx.view(-1,1)
89
+ idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1)
90
+ pos_idx = torch.eq(idx, idx_all).float()
91
+ sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)
92
+
93
+ # get momentum features
94
+ with torch.no_grad():
95
+ self._momentum_update()
96
+ image_embeds_m = self.visual_encoder_m(image)
97
+ image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)
98
+ image_feat_m_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)
99
+
100
+ text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,
101
+ return_dict = True, mode = 'text')
102
+ text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1)
103
+ text_feat_m_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
104
+
105
+ sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp
106
+ sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp
107
+
108
+ sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
109
+ sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets
110
+
111
+ sim_i2t = image_feat @ text_feat_m_all / self.temp
112
+ sim_t2i = text_feat @ image_feat_m_all / self.temp
113
+
114
+ loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
115
+ loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean()
116
+
117
+ loss_ita = (loss_i2t+loss_t2i)/2
118
+
119
+ idxs = concat_all_gather(idx)
120
+ self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs)
121
+
122
+ ###============== Image-text Matching ===================###
123
+ encoder_input_ids = text.input_ids.clone()
124
+ encoder_input_ids[:,0] = self.tokenizer.enc_token_id
125
+
126
+ # forward the positve image-text pair
127
+ bs = image.size(0)
128
+ output_pos = self.text_encoder(encoder_input_ids,
129
+ attention_mask = text.attention_mask,
130
+ encoder_hidden_states = image_embeds,
131
+ encoder_attention_mask = image_atts,
132
+ return_dict = True,
133
+ )
134
+
135
+
136
+ if self.negative_all_rank:
137
+ # compute sample similarity
138
+ with torch.no_grad():
139
+ mask = torch.eq(idx, idxs.t())
140
+
141
+ image_feat_world = concat_all_gather(image_feat)
142
+ text_feat_world = concat_all_gather(text_feat)
143
+
144
+ sim_i2t = image_feat @ text_feat_world.t() / self.temp
145
+ sim_t2i = text_feat @ image_feat_world.t() / self.temp
146
+
147
+ weights_i2t = F.softmax(sim_i2t,dim=1)
148
+ weights_i2t.masked_fill_(mask, 0)
149
+
150
+ weights_t2i = F.softmax(sim_t2i,dim=1)
151
+ weights_t2i.masked_fill_(mask, 0)
152
+
153
+ image_embeds_world = all_gather_with_grad(image_embeds)
154
+
155
+ # select a negative image (from all ranks) for each text
156
+ image_embeds_neg = []
157
+ for b in range(bs):
158
+ neg_idx = torch.multinomial(weights_t2i[b], 1).item()
159
+ image_embeds_neg.append(image_embeds_world[neg_idx])
160
+ image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
161
+
162
+ # select a negative text (from all ranks) for each image
163
+ input_ids_world = concat_all_gather(encoder_input_ids)
164
+ att_mask_world = concat_all_gather(text.attention_mask)
165
+
166
+ text_ids_neg = []
167
+ text_atts_neg = []
168
+ for b in range(bs):
169
+ neg_idx = torch.multinomial(weights_i2t[b], 1).item()
170
+ text_ids_neg.append(input_ids_world[neg_idx])
171
+ text_atts_neg.append(att_mask_world[neg_idx])
172
+
173
+ else:
174
+ with torch.no_grad():
175
+ mask = torch.eq(idx, idx.t())
176
+
177
+ sim_i2t = image_feat @ text_feat.t() / self.temp
178
+ sim_t2i = text_feat @ image_feat.t() / self.temp
179
+
180
+ weights_i2t = F.softmax(sim_i2t,dim=1)
181
+ weights_i2t.masked_fill_(mask, 0)
182
+
183
+ weights_t2i = F.softmax(sim_t2i,dim=1)
184
+ weights_t2i.masked_fill_(mask, 0)
185
+
186
+ # select a negative image (from same rank) for each text
187
+ image_embeds_neg = []
188
+ for b in range(bs):
189
+ neg_idx = torch.multinomial(weights_t2i[b], 1).item()
190
+ image_embeds_neg.append(image_embeds[neg_idx])
191
+ image_embeds_neg = torch.stack(image_embeds_neg,dim=0)
192
+
193
+ # select a negative text (from same rank) for each image
194
+ text_ids_neg = []
195
+ text_atts_neg = []
196
+ for b in range(bs):
197
+ neg_idx = torch.multinomial(weights_i2t[b], 1).item()
198
+ text_ids_neg.append(encoder_input_ids[neg_idx])
199
+ text_atts_neg.append(text.attention_mask[neg_idx])
200
+
201
+ text_ids_neg = torch.stack(text_ids_neg,dim=0)
202
+ text_atts_neg = torch.stack(text_atts_neg,dim=0)
203
+
204
+ text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)
205
+ text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)
206
+
207
+ image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
208
+ image_atts_all = torch.cat([image_atts,image_atts],dim=0)
209
+
210
+ output_neg = self.text_encoder(text_ids_all,
211
+ attention_mask = text_atts_all,
212
+ encoder_hidden_states = image_embeds_all,
213
+ encoder_attention_mask = image_atts_all,
214
+ return_dict = True,
215
+ )
216
+
217
+
218
+ vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
219
+ vl_output = self.itm_head(vl_embeddings)
220
+
221
+ itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
222
+ dim=0).to(image.device)
223
+ loss_itm = F.cross_entropy(vl_output, itm_labels)
224
+
225
+ return loss_ita, loss_itm
226
+
227
+
228
+ @torch.no_grad()
229
+ def copy_params(self):
230
+ for model_pair in self.model_pairs:
231
+ for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
232
+ param_m.data.copy_(param.data) # initialize
233
+ param_m.requires_grad = False # not update by gradient
234
+
235
+
236
+ @torch.no_grad()
237
+ def _momentum_update(self):
238
+ for model_pair in self.model_pairs:
239
+ for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
240
+ param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
241
+
242
+
243
+ @torch.no_grad()
244
+ def _dequeue_and_enqueue(self, image_feat, text_feat, idxs):
245
+ # gather keys before updating queue
246
+ image_feats = concat_all_gather(image_feat)
247
+ text_feats = concat_all_gather(text_feat)
248
+
249
+
250
+ batch_size = image_feats.shape[0]
251
+
252
+ ptr = int(self.ptr_queue)
253
+ assert self.queue_size % batch_size == 0 # for simplicity
254
+
255
+ # replace the keys at ptr (dequeue and enqueue)
256
+ self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
257
+ self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
258
+ self.idx_queue[:, ptr:ptr + batch_size] = idxs.T
259
+ ptr = (ptr + batch_size) % self.queue_size # move pointer
260
+
261
+ self.ptr_queue[0] = ptr
262
+
263
+
264
+ def blip_retrieval(pretrained='',**kwargs):
265
+ model = BLIP_Retrieval(**kwargs)
266
+ if pretrained:
267
+ model,msg = load_checkpoint(model,pretrained)
268
+ print("missing keys:")
269
+ print(msg.missing_keys)
270
+ return model
271
+
272
+
273
+ @torch.no_grad()
274
+ def concat_all_gather(tensor):
275
+ """
276
+ Performs all_gather operation on the provided tensors.
277
+ *** Warning ***: torch.distributed.all_gather has no gradient.
278
+ """
279
+ tensors_gather = [torch.ones_like(tensor)
280
+ for _ in range(torch.distributed.get_world_size())]
281
+ torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
282
+
283
+ output = torch.cat(tensors_gather, dim=0)
284
+ return output
285
+
286
+
287
+ class GatherLayer(torch.autograd.Function):
288
+ """
289
+ Gather tensors from all workers with support for backward propagation:
290
+ This implementation does not cut the gradients as torch.distributed.all_gather does.
291
+ """
292
+
293
+ @staticmethod
294
+ def forward(ctx, x):
295
+ output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())]
296
+ torch.distributed.all_gather(output, x)
297
+ return tuple(output)
298
+
299
+ @staticmethod
300
+ def backward(ctx, *grads):
301
+ all_gradients = torch.stack(grads)
302
+ torch.distributed.all_reduce(all_gradients)
303
+ return all_gradients[torch.distributed.get_rank()]
304
+
305
+
306
+ def all_gather_with_grad(tensors):
307
+ """
308
+ Performs all_gather operation on the provided tensors.
309
+ Graph remains connected for backward grad computation.
310
+ """
311
+ # Queue the gathered tensors
312
+ world_size = torch.distributed.get_world_size()
313
+ # There is no need for reduction in the single-proc case
314
+ if world_size == 1:
315
+ return tensors
316
+
317
+ tensor_all = GatherLayer.apply(tensors)
318
+
319
+ return torch.cat(tensor_all, dim=0)
extras/BLIP/models/blip_vqa.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
2
+ from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
3
+
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ from transformers import BertTokenizer
8
+ import numpy as np
9
+
10
+ class BLIP_VQA(nn.Module):
11
+ def __init__(self,
12
+ med_config = 'configs/med_config.json',
13
+ image_size = 480,
14
+ vit = 'base',
15
+ vit_grad_ckpt = False,
16
+ vit_ckpt_layer = 0,
17
+ ):
18
+ """
19
+ Args:
20
+ med_config (str): path for the mixture of encoder-decoder model's configuration file
21
+ image_size (int): input image size
22
+ vit (str): model size of vision transformer
23
+ """
24
+ super().__init__()
25
+
26
+ self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
27
+ self.tokenizer = init_tokenizer()
28
+
29
+ encoder_config = BertConfig.from_json_file(med_config)
30
+ encoder_config.encoder_width = vision_width
31
+ self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
32
+
33
+ decoder_config = BertConfig.from_json_file(med_config)
34
+ self.text_decoder = BertLMHeadModel(config=decoder_config)
35
+
36
+
37
+ def forward(self, image, question, answer=None, n=None, weights=None, train=True, inference='rank', k_test=128):
38
+
39
+ image_embeds = self.visual_encoder(image)
40
+ image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
41
+
42
+ question = self.tokenizer(question, padding='longest', truncation=True, max_length=35,
43
+ return_tensors="pt").to(image.device)
44
+ question.input_ids[:,0] = self.tokenizer.enc_token_id
45
+
46
+ if train:
47
+ '''
48
+ n: number of answers for each question
49
+ weights: weight for each answer
50
+ '''
51
+ answer = self.tokenizer(answer, padding='longest', return_tensors="pt").to(image.device)
52
+ answer.input_ids[:,0] = self.tokenizer.bos_token_id
53
+ answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100)
54
+
55
+ question_output = self.text_encoder(question.input_ids,
56
+ attention_mask = question.attention_mask,
57
+ encoder_hidden_states = image_embeds,
58
+ encoder_attention_mask = image_atts,
59
+ return_dict = True)
60
+
61
+ question_states = []
62
+ question_atts = []
63
+ for b, n in enumerate(n):
64
+ question_states += [question_output.last_hidden_state[b]]*n
65
+ question_atts += [question.attention_mask[b]]*n
66
+ question_states = torch.stack(question_states,0)
67
+ question_atts = torch.stack(question_atts,0)
68
+
69
+ answer_output = self.text_decoder(answer.input_ids,
70
+ attention_mask = answer.attention_mask,
71
+ encoder_hidden_states = question_states,
72
+ encoder_attention_mask = question_atts,
73
+ labels = answer_targets,
74
+ return_dict = True,
75
+ reduction = 'none',
76
+ )
77
+
78
+ loss = weights * answer_output.loss
79
+ loss = loss.sum()/image.size(0)
80
+
81
+ return loss
82
+
83
+
84
+ else:
85
+ question_output = self.text_encoder(question.input_ids,
86
+ attention_mask = question.attention_mask,
87
+ encoder_hidden_states = image_embeds,
88
+ encoder_attention_mask = image_atts,
89
+ return_dict = True)
90
+
91
+ if inference=='generate':
92
+ num_beams = 3
93
+ question_states = question_output.last_hidden_state.repeat_interleave(num_beams,dim=0)
94
+ question_atts = torch.ones(question_states.size()[:-1],dtype=torch.long).to(question_states.device)
95
+ model_kwargs = {"encoder_hidden_states": question_states, "encoder_attention_mask":question_atts}
96
+
97
+ bos_ids = torch.full((image.size(0),1),fill_value=self.tokenizer.bos_token_id,device=image.device)
98
+
99
+ outputs = self.text_decoder.generate(input_ids=bos_ids,
100
+ max_length=10,
101
+ min_length=1,
102
+ num_beams=num_beams,
103
+ eos_token_id=self.tokenizer.sep_token_id,
104
+ pad_token_id=self.tokenizer.pad_token_id,
105
+ **model_kwargs)
106
+
107
+ answers = []
108
+ for output in outputs:
109
+ answer = self.tokenizer.decode(output, skip_special_tokens=True)
110
+ answers.append(answer)
111
+ return answers
112
+
113
+ elif inference=='rank':
114
+ max_ids = self.rank_answer(question_output.last_hidden_state, question.attention_mask,
115
+ answer.input_ids, answer.attention_mask, k_test)
116
+ return max_ids
117
+
118
+
119
+
120
+ def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k):
121
+
122
+ num_ques = question_states.size(0)
123
+ start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token
124
+
125
+ start_output = self.text_decoder(start_ids,
126
+ encoder_hidden_states = question_states,
127
+ encoder_attention_mask = question_atts,
128
+ return_dict = True,
129
+ reduction = 'none')
130
+ logits = start_output.logits[:,0,:] # first token's logit
131
+
132
+ # topk_probs: top-k probability
133
+ # topk_ids: [num_question, k]
134
+ answer_first_token = answer_ids[:,1]
135
+ prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token)
136
+ topk_probs, topk_ids = prob_first_token.topk(k,dim=1)
137
+
138
+ # answer input: [num_question*k, answer_len]
139
+ input_ids = []
140
+ input_atts = []
141
+ for b, topk_id in enumerate(topk_ids):
142
+ input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
143
+ input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
144
+ input_ids = torch.cat(input_ids,dim=0)
145
+ input_atts = torch.cat(input_atts,dim=0)
146
+
147
+ targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100)
148
+
149
+ # repeat encoder's output for top-k answers
150
+ question_states = tile(question_states, 0, k)
151
+ question_atts = tile(question_atts, 0, k)
152
+
153
+ output = self.text_decoder(input_ids,
154
+ attention_mask = input_atts,
155
+ encoder_hidden_states = question_states,
156
+ encoder_attention_mask = question_atts,
157
+ labels = targets_ids,
158
+ return_dict = True,
159
+ reduction = 'none')
160
+
161
+ log_probs_sum = -output.loss
162
+ log_probs_sum = log_probs_sum.view(num_ques,k)
163
+
164
+ max_topk_ids = log_probs_sum.argmax(dim=1)
165
+ max_ids = topk_ids[max_topk_ids>=0,max_topk_ids]
166
+
167
+ return max_ids
168
+
169
+
170
+ def blip_vqa(pretrained='',**kwargs):
171
+ model = BLIP_VQA(**kwargs)
172
+ if pretrained:
173
+ model,msg = load_checkpoint(model,pretrained)
174
+ # assert(len(msg.missing_keys)==0)
175
+ return model
176
+
177
+
178
+ def tile(x, dim, n_tile):
179
+ init_dim = x.size(dim)
180
+ repeat_idx = [1] * x.dim()
181
+ repeat_idx[dim] = n_tile
182
+ x = x.repeat(*(repeat_idx))
183
+ order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
184
+ return torch.index_select(x, dim, order_index.to(x.device))
185
+
186
+
extras/BLIP/models/med.py ADDED
@@ -0,0 +1,955 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ * Based on huggingface code base
8
+ * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
9
+ '''
10
+
11
+ import math
12
+ import os
13
+ import warnings
14
+ from dataclasses import dataclass
15
+ from typing import Optional, Tuple
16
+
17
+ import torch
18
+ from torch import Tensor, device, dtype, nn
19
+ import torch.utils.checkpoint
20
+ from torch import nn
21
+ from torch.nn import CrossEntropyLoss
22
+ import torch.nn.functional as F
23
+
24
+ from transformers.activations import ACT2FN
25
+ from transformers.file_utils import (
26
+ ModelOutput,
27
+ )
28
+ from transformers.modeling_outputs import (
29
+ BaseModelOutputWithPastAndCrossAttentions,
30
+ BaseModelOutputWithPoolingAndCrossAttentions,
31
+ CausalLMOutputWithCrossAttentions,
32
+ MaskedLMOutput,
33
+ MultipleChoiceModelOutput,
34
+ NextSentencePredictorOutput,
35
+ QuestionAnsweringModelOutput,
36
+ SequenceClassifierOutput,
37
+ TokenClassifierOutput,
38
+ )
39
+ from transformers.modeling_utils import (
40
+ PreTrainedModel,
41
+ apply_chunking_to_forward,
42
+ find_pruneable_heads_and_indices,
43
+ prune_linear_layer,
44
+ )
45
+ from transformers.utils import logging
46
+ from transformers.models.bert.configuration_bert import BertConfig
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+
52
+ class BertEmbeddings(nn.Module):
53
+ """Construct the embeddings from word and position embeddings."""
54
+
55
+ def __init__(self, config):
56
+ super().__init__()
57
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
58
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
59
+
60
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
61
+ # any TensorFlow checkpoint file
62
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
63
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
64
+
65
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
66
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
67
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
68
+
69
+ self.config = config
70
+
71
+ def forward(
72
+ self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
73
+ ):
74
+ if input_ids is not None:
75
+ input_shape = input_ids.size()
76
+ else:
77
+ input_shape = inputs_embeds.size()[:-1]
78
+
79
+ seq_length = input_shape[1]
80
+
81
+ if position_ids is None:
82
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
83
+
84
+ if inputs_embeds is None:
85
+ inputs_embeds = self.word_embeddings(input_ids)
86
+
87
+ embeddings = inputs_embeds
88
+
89
+ if self.position_embedding_type == "absolute":
90
+ position_embeddings = self.position_embeddings(position_ids)
91
+ embeddings += position_embeddings
92
+ embeddings = self.LayerNorm(embeddings)
93
+ embeddings = self.dropout(embeddings)
94
+ return embeddings
95
+
96
+
97
+ class BertSelfAttention(nn.Module):
98
+ def __init__(self, config, is_cross_attention):
99
+ super().__init__()
100
+ self.config = config
101
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
102
+ raise ValueError(
103
+ "The hidden size (%d) is not a multiple of the number of attention "
104
+ "heads (%d)" % (config.hidden_size, config.num_attention_heads)
105
+ )
106
+
107
+ self.num_attention_heads = config.num_attention_heads
108
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
109
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
110
+
111
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
112
+ if is_cross_attention:
113
+ self.key = nn.Linear(config.encoder_width, self.all_head_size)
114
+ self.value = nn.Linear(config.encoder_width, self.all_head_size)
115
+ else:
116
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
117
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
118
+
119
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
120
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
121
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
122
+ self.max_position_embeddings = config.max_position_embeddings
123
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
124
+ self.save_attention = False
125
+
126
+ def save_attn_gradients(self, attn_gradients):
127
+ self.attn_gradients = attn_gradients
128
+
129
+ def get_attn_gradients(self):
130
+ return self.attn_gradients
131
+
132
+ def save_attention_map(self, attention_map):
133
+ self.attention_map = attention_map
134
+
135
+ def get_attention_map(self):
136
+ return self.attention_map
137
+
138
+ def transpose_for_scores(self, x):
139
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
140
+ x = x.view(*new_x_shape)
141
+ return x.permute(0, 2, 1, 3)
142
+
143
+ def forward(
144
+ self,
145
+ hidden_states,
146
+ attention_mask=None,
147
+ head_mask=None,
148
+ encoder_hidden_states=None,
149
+ encoder_attention_mask=None,
150
+ past_key_value=None,
151
+ output_attentions=False,
152
+ ):
153
+ mixed_query_layer = self.query(hidden_states)
154
+
155
+ # If this is instantiated as a cross-attention module, the keys
156
+ # and values come from an encoder; the attention mask needs to be
157
+ # such that the encoder's padding tokens are not attended to.
158
+ is_cross_attention = encoder_hidden_states is not None
159
+
160
+ if is_cross_attention:
161
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
162
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
163
+ attention_mask = encoder_attention_mask
164
+ elif past_key_value is not None:
165
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
166
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
167
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
168
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
169
+ else:
170
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
171
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
172
+
173
+ query_layer = self.transpose_for_scores(mixed_query_layer)
174
+
175
+ past_key_value = (key_layer, value_layer)
176
+
177
+ # Take the dot product between "query" and "key" to get the raw attention scores.
178
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
179
+
180
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
181
+ seq_length = hidden_states.size()[1]
182
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
183
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
184
+ distance = position_ids_l - position_ids_r
185
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
186
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
187
+
188
+ if self.position_embedding_type == "relative_key":
189
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
190
+ attention_scores = attention_scores + relative_position_scores
191
+ elif self.position_embedding_type == "relative_key_query":
192
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
193
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
194
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
195
+
196
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
197
+ if attention_mask is not None:
198
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
199
+ attention_scores = attention_scores + attention_mask
200
+
201
+ # Normalize the attention scores to probabilities.
202
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
203
+
204
+ if is_cross_attention and self.save_attention:
205
+ self.save_attention_map(attention_probs)
206
+ attention_probs.register_hook(self.save_attn_gradients)
207
+
208
+ # This is actually dropping out entire tokens to attend to, which might
209
+ # seem a bit unusual, but is taken from the original Transformer paper.
210
+ attention_probs_dropped = self.dropout(attention_probs)
211
+
212
+ # Mask heads if we want to
213
+ if head_mask is not None:
214
+ attention_probs_dropped = attention_probs_dropped * head_mask
215
+
216
+ context_layer = torch.matmul(attention_probs_dropped, value_layer)
217
+
218
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
219
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
220
+ context_layer = context_layer.view(*new_context_layer_shape)
221
+
222
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
223
+
224
+ outputs = outputs + (past_key_value,)
225
+ return outputs
226
+
227
+
228
+ class BertSelfOutput(nn.Module):
229
+ def __init__(self, config):
230
+ super().__init__()
231
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
232
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
233
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
234
+
235
+ def forward(self, hidden_states, input_tensor):
236
+ hidden_states = self.dense(hidden_states)
237
+ hidden_states = self.dropout(hidden_states)
238
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
239
+ return hidden_states
240
+
241
+
242
+ class BertAttention(nn.Module):
243
+ def __init__(self, config, is_cross_attention=False):
244
+ super().__init__()
245
+ self.self = BertSelfAttention(config, is_cross_attention)
246
+ self.output = BertSelfOutput(config)
247
+ self.pruned_heads = set()
248
+
249
+ def prune_heads(self, heads):
250
+ if len(heads) == 0:
251
+ return
252
+ heads, index = find_pruneable_heads_and_indices(
253
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
254
+ )
255
+
256
+ # Prune linear layers
257
+ self.self.query = prune_linear_layer(self.self.query, index)
258
+ self.self.key = prune_linear_layer(self.self.key, index)
259
+ self.self.value = prune_linear_layer(self.self.value, index)
260
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
261
+
262
+ # Update hyper params and store pruned heads
263
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
264
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
265
+ self.pruned_heads = self.pruned_heads.union(heads)
266
+
267
+ def forward(
268
+ self,
269
+ hidden_states,
270
+ attention_mask=None,
271
+ head_mask=None,
272
+ encoder_hidden_states=None,
273
+ encoder_attention_mask=None,
274
+ past_key_value=None,
275
+ output_attentions=False,
276
+ ):
277
+ self_outputs = self.self(
278
+ hidden_states,
279
+ attention_mask,
280
+ head_mask,
281
+ encoder_hidden_states,
282
+ encoder_attention_mask,
283
+ past_key_value,
284
+ output_attentions,
285
+ )
286
+ attention_output = self.output(self_outputs[0], hidden_states)
287
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
288
+ return outputs
289
+
290
+
291
+ class BertIntermediate(nn.Module):
292
+ def __init__(self, config):
293
+ super().__init__()
294
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
295
+ if isinstance(config.hidden_act, str):
296
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
297
+ else:
298
+ self.intermediate_act_fn = config.hidden_act
299
+
300
+ def forward(self, hidden_states):
301
+ hidden_states = self.dense(hidden_states)
302
+ hidden_states = self.intermediate_act_fn(hidden_states)
303
+ return hidden_states
304
+
305
+
306
+ class BertOutput(nn.Module):
307
+ def __init__(self, config):
308
+ super().__init__()
309
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
310
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
311
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
312
+
313
+ def forward(self, hidden_states, input_tensor):
314
+ hidden_states = self.dense(hidden_states)
315
+ hidden_states = self.dropout(hidden_states)
316
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
317
+ return hidden_states
318
+
319
+
320
+ class BertLayer(nn.Module):
321
+ def __init__(self, config, layer_num):
322
+ super().__init__()
323
+ self.config = config
324
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
325
+ self.seq_len_dim = 1
326
+ self.attention = BertAttention(config)
327
+ self.layer_num = layer_num
328
+ if self.config.add_cross_attention:
329
+ self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
330
+ self.intermediate = BertIntermediate(config)
331
+ self.output = BertOutput(config)
332
+
333
+ def forward(
334
+ self,
335
+ hidden_states,
336
+ attention_mask=None,
337
+ head_mask=None,
338
+ encoder_hidden_states=None,
339
+ encoder_attention_mask=None,
340
+ past_key_value=None,
341
+ output_attentions=False,
342
+ mode=None,
343
+ ):
344
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
345
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
346
+ self_attention_outputs = self.attention(
347
+ hidden_states,
348
+ attention_mask,
349
+ head_mask,
350
+ output_attentions=output_attentions,
351
+ past_key_value=self_attn_past_key_value,
352
+ )
353
+ attention_output = self_attention_outputs[0]
354
+
355
+ outputs = self_attention_outputs[1:-1]
356
+ present_key_value = self_attention_outputs[-1]
357
+
358
+ if mode=='multimodal':
359
+ assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
360
+
361
+ cross_attention_outputs = self.crossattention(
362
+ attention_output,
363
+ attention_mask,
364
+ head_mask,
365
+ encoder_hidden_states,
366
+ encoder_attention_mask,
367
+ output_attentions=output_attentions,
368
+ )
369
+ attention_output = cross_attention_outputs[0]
370
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
371
+ layer_output = apply_chunking_to_forward(
372
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
373
+ )
374
+ outputs = (layer_output,) + outputs
375
+
376
+ outputs = outputs + (present_key_value,)
377
+
378
+ return outputs
379
+
380
+ def feed_forward_chunk(self, attention_output):
381
+ intermediate_output = self.intermediate(attention_output)
382
+ layer_output = self.output(intermediate_output, attention_output)
383
+ return layer_output
384
+
385
+
386
+ class BertEncoder(nn.Module):
387
+ def __init__(self, config):
388
+ super().__init__()
389
+ self.config = config
390
+ self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
391
+ self.gradient_checkpointing = False
392
+
393
+ def forward(
394
+ self,
395
+ hidden_states,
396
+ attention_mask=None,
397
+ head_mask=None,
398
+ encoder_hidden_states=None,
399
+ encoder_attention_mask=None,
400
+ past_key_values=None,
401
+ use_cache=None,
402
+ output_attentions=False,
403
+ output_hidden_states=False,
404
+ return_dict=True,
405
+ mode='multimodal',
406
+ ):
407
+ all_hidden_states = () if output_hidden_states else None
408
+ all_self_attentions = () if output_attentions else None
409
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
410
+
411
+ next_decoder_cache = () if use_cache else None
412
+
413
+ for i in range(self.config.num_hidden_layers):
414
+ layer_module = self.layer[i]
415
+ if output_hidden_states:
416
+ all_hidden_states = all_hidden_states + (hidden_states,)
417
+
418
+ layer_head_mask = head_mask[i] if head_mask is not None else None
419
+ past_key_value = past_key_values[i] if past_key_values is not None else None
420
+
421
+ if self.gradient_checkpointing and self.training:
422
+
423
+ if use_cache:
424
+ logger.warn(
425
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
426
+ )
427
+ use_cache = False
428
+
429
+ def create_custom_forward(module):
430
+ def custom_forward(*inputs):
431
+ return module(*inputs, past_key_value, output_attentions)
432
+
433
+ return custom_forward
434
+
435
+ layer_outputs = torch.utils.checkpoint.checkpoint(
436
+ create_custom_forward(layer_module),
437
+ hidden_states,
438
+ attention_mask,
439
+ layer_head_mask,
440
+ encoder_hidden_states,
441
+ encoder_attention_mask,
442
+ mode=mode,
443
+ )
444
+ else:
445
+ layer_outputs = layer_module(
446
+ hidden_states,
447
+ attention_mask,
448
+ layer_head_mask,
449
+ encoder_hidden_states,
450
+ encoder_attention_mask,
451
+ past_key_value,
452
+ output_attentions,
453
+ mode=mode,
454
+ )
455
+
456
+ hidden_states = layer_outputs[0]
457
+ if use_cache:
458
+ next_decoder_cache += (layer_outputs[-1],)
459
+ if output_attentions:
460
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
461
+
462
+ if output_hidden_states:
463
+ all_hidden_states = all_hidden_states + (hidden_states,)
464
+
465
+ if not return_dict:
466
+ return tuple(
467
+ v
468
+ for v in [
469
+ hidden_states,
470
+ next_decoder_cache,
471
+ all_hidden_states,
472
+ all_self_attentions,
473
+ all_cross_attentions,
474
+ ]
475
+ if v is not None
476
+ )
477
+ return BaseModelOutputWithPastAndCrossAttentions(
478
+ last_hidden_state=hidden_states,
479
+ past_key_values=next_decoder_cache,
480
+ hidden_states=all_hidden_states,
481
+ attentions=all_self_attentions,
482
+ cross_attentions=all_cross_attentions,
483
+ )
484
+
485
+
486
+ class BertPooler(nn.Module):
487
+ def __init__(self, config):
488
+ super().__init__()
489
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
490
+ self.activation = nn.Tanh()
491
+
492
+ def forward(self, hidden_states):
493
+ # We "pool" the model by simply taking the hidden state corresponding
494
+ # to the first token.
495
+ first_token_tensor = hidden_states[:, 0]
496
+ pooled_output = self.dense(first_token_tensor)
497
+ pooled_output = self.activation(pooled_output)
498
+ return pooled_output
499
+
500
+
501
+ class BertPredictionHeadTransform(nn.Module):
502
+ def __init__(self, config):
503
+ super().__init__()
504
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
505
+ if isinstance(config.hidden_act, str):
506
+ self.transform_act_fn = ACT2FN[config.hidden_act]
507
+ else:
508
+ self.transform_act_fn = config.hidden_act
509
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
510
+
511
+ def forward(self, hidden_states):
512
+ hidden_states = self.dense(hidden_states)
513
+ hidden_states = self.transform_act_fn(hidden_states)
514
+ hidden_states = self.LayerNorm(hidden_states)
515
+ return hidden_states
516
+
517
+
518
+ class BertLMPredictionHead(nn.Module):
519
+ def __init__(self, config):
520
+ super().__init__()
521
+ self.transform = BertPredictionHeadTransform(config)
522
+
523
+ # The output weights are the same as the input embeddings, but there is
524
+ # an output-only bias for each token.
525
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
526
+
527
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
528
+
529
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
530
+ self.decoder.bias = self.bias
531
+
532
+ def forward(self, hidden_states):
533
+ hidden_states = self.transform(hidden_states)
534
+ hidden_states = self.decoder(hidden_states)
535
+ return hidden_states
536
+
537
+
538
+ class BertOnlyMLMHead(nn.Module):
539
+ def __init__(self, config):
540
+ super().__init__()
541
+ self.predictions = BertLMPredictionHead(config)
542
+
543
+ def forward(self, sequence_output):
544
+ prediction_scores = self.predictions(sequence_output)
545
+ return prediction_scores
546
+
547
+
548
+ class BertPreTrainedModel(PreTrainedModel):
549
+ """
550
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
551
+ models.
552
+ """
553
+
554
+ config_class = BertConfig
555
+ base_model_prefix = "bert"
556
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
557
+
558
+ def _init_weights(self, module):
559
+ """ Initialize the weights """
560
+ if isinstance(module, (nn.Linear, nn.Embedding)):
561
+ # Slightly different from the TF version which uses truncated_normal for initialization
562
+ # cf https://github.com/pytorch/pytorch/pull/5617
563
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
564
+ elif isinstance(module, nn.LayerNorm):
565
+ module.bias.data.zero_()
566
+ module.weight.data.fill_(1.0)
567
+ if isinstance(module, nn.Linear) and module.bias is not None:
568
+ module.bias.data.zero_()
569
+
570
+
571
+ class BertModel(BertPreTrainedModel):
572
+ """
573
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
574
+ cross-attention is added between the self-attention layers, following the architecture described in `Attention is
575
+ all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
576
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
577
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
578
+ input to the forward pass.
579
+ """
580
+
581
+ def __init__(self, config, add_pooling_layer=True):
582
+ super().__init__(config)
583
+ self.config = config
584
+
585
+ self.embeddings = BertEmbeddings(config)
586
+
587
+ self.encoder = BertEncoder(config)
588
+
589
+ self.pooler = BertPooler(config) if add_pooling_layer else None
590
+
591
+ self.init_weights()
592
+
593
+
594
+ def get_input_embeddings(self):
595
+ return self.embeddings.word_embeddings
596
+
597
+ def set_input_embeddings(self, value):
598
+ self.embeddings.word_embeddings = value
599
+
600
+ def _prune_heads(self, heads_to_prune):
601
+ """
602
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
603
+ class PreTrainedModel
604
+ """
605
+ for layer, heads in heads_to_prune.items():
606
+ self.encoder.layer[layer].attention.prune_heads(heads)
607
+
608
+
609
+ def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
610
+ """
611
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
612
+
613
+ Arguments:
614
+ attention_mask (:obj:`torch.Tensor`):
615
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
616
+ input_shape (:obj:`Tuple[int]`):
617
+ The shape of the input to the model.
618
+ device: (:obj:`torch.device`):
619
+ The device of the input to the model.
620
+
621
+ Returns:
622
+ :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
623
+ """
624
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
625
+ # ourselves in which case we just need to make it broadcastable to all heads.
626
+ if attention_mask.dim() == 3:
627
+ extended_attention_mask = attention_mask[:, None, :, :]
628
+ elif attention_mask.dim() == 2:
629
+ # Provided a padding mask of dimensions [batch_size, seq_length]
630
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
631
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
632
+ if is_decoder:
633
+ batch_size, seq_length = input_shape
634
+
635
+ seq_ids = torch.arange(seq_length, device=device)
636
+ causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
637
+ # in case past_key_values are used we need to add a prefix ones mask to the causal mask
638
+ # causal and attention masks must have same type with pytorch version < 1.3
639
+ causal_mask = causal_mask.to(attention_mask.dtype)
640
+
641
+ if causal_mask.shape[1] < attention_mask.shape[1]:
642
+ prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
643
+ causal_mask = torch.cat(
644
+ [
645
+ torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
646
+ causal_mask,
647
+ ],
648
+ axis=-1,
649
+ )
650
+
651
+ extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
652
+ else:
653
+ extended_attention_mask = attention_mask[:, None, None, :]
654
+ else:
655
+ raise ValueError(
656
+ "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
657
+ input_shape, attention_mask.shape
658
+ )
659
+ )
660
+
661
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
662
+ # masked positions, this operation will create a tensor which is 0.0 for
663
+ # positions we want to attend and -10000.0 for masked positions.
664
+ # Since we are adding it to the raw scores before the softmax, this is
665
+ # effectively the same as removing these entirely.
666
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
667
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
668
+ return extended_attention_mask
669
+
670
+ def forward(
671
+ self,
672
+ input_ids=None,
673
+ attention_mask=None,
674
+ position_ids=None,
675
+ head_mask=None,
676
+ inputs_embeds=None,
677
+ encoder_embeds=None,
678
+ encoder_hidden_states=None,
679
+ encoder_attention_mask=None,
680
+ past_key_values=None,
681
+ use_cache=None,
682
+ output_attentions=None,
683
+ output_hidden_states=None,
684
+ return_dict=None,
685
+ is_decoder=False,
686
+ mode='multimodal',
687
+ ):
688
+ r"""
689
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
690
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
691
+ the model is configured as a decoder.
692
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
693
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
694
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
695
+ - 1 for tokens that are **not masked**,
696
+ - 0 for tokens that are **masked**.
697
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
698
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
699
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
700
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
701
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
702
+ use_cache (:obj:`bool`, `optional`):
703
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
704
+ decoding (see :obj:`past_key_values`).
705
+ """
706
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
707
+ output_hidden_states = (
708
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
709
+ )
710
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
711
+
712
+ if is_decoder:
713
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
714
+ else:
715
+ use_cache = False
716
+
717
+ if input_ids is not None and inputs_embeds is not None:
718
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
719
+ elif input_ids is not None:
720
+ input_shape = input_ids.size()
721
+ batch_size, seq_length = input_shape
722
+ device = input_ids.device
723
+ elif inputs_embeds is not None:
724
+ input_shape = inputs_embeds.size()[:-1]
725
+ batch_size, seq_length = input_shape
726
+ device = inputs_embeds.device
727
+ elif encoder_embeds is not None:
728
+ input_shape = encoder_embeds.size()[:-1]
729
+ batch_size, seq_length = input_shape
730
+ device = encoder_embeds.device
731
+ else:
732
+ raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
733
+
734
+ # past_key_values_length
735
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
736
+
737
+ if attention_mask is None:
738
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
739
+
740
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
741
+ # ourselves in which case we just need to make it broadcastable to all heads.
742
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
743
+ device, is_decoder)
744
+
745
+ # If a 2D or 3D attention mask is provided for the cross-attention
746
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
747
+ if encoder_hidden_states is not None:
748
+ if type(encoder_hidden_states) == list:
749
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
750
+ else:
751
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
752
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
753
+
754
+ if type(encoder_attention_mask) == list:
755
+ encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
756
+ elif encoder_attention_mask is None:
757
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
758
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
759
+ else:
760
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
761
+ else:
762
+ encoder_extended_attention_mask = None
763
+
764
+ # Prepare head mask if needed
765
+ # 1.0 in head_mask indicate we keep the head
766
+ # attention_probs has shape bsz x n_heads x N x N
767
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
768
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
769
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
770
+
771
+ if encoder_embeds is None:
772
+ embedding_output = self.embeddings(
773
+ input_ids=input_ids,
774
+ position_ids=position_ids,
775
+ inputs_embeds=inputs_embeds,
776
+ past_key_values_length=past_key_values_length,
777
+ )
778
+ else:
779
+ embedding_output = encoder_embeds
780
+
781
+ encoder_outputs = self.encoder(
782
+ embedding_output,
783
+ attention_mask=extended_attention_mask,
784
+ head_mask=head_mask,
785
+ encoder_hidden_states=encoder_hidden_states,
786
+ encoder_attention_mask=encoder_extended_attention_mask,
787
+ past_key_values=past_key_values,
788
+ use_cache=use_cache,
789
+ output_attentions=output_attentions,
790
+ output_hidden_states=output_hidden_states,
791
+ return_dict=return_dict,
792
+ mode=mode,
793
+ )
794
+ sequence_output = encoder_outputs[0]
795
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
796
+
797
+ if not return_dict:
798
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
799
+
800
+ return BaseModelOutputWithPoolingAndCrossAttentions(
801
+ last_hidden_state=sequence_output,
802
+ pooler_output=pooled_output,
803
+ past_key_values=encoder_outputs.past_key_values,
804
+ hidden_states=encoder_outputs.hidden_states,
805
+ attentions=encoder_outputs.attentions,
806
+ cross_attentions=encoder_outputs.cross_attentions,
807
+ )
808
+
809
+
810
+
811
+ class BertLMHeadModel(BertPreTrainedModel):
812
+
813
+ _keys_to_ignore_on_load_unexpected = [r"pooler"]
814
+ _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
815
+
816
+ def __init__(self, config):
817
+ super().__init__(config)
818
+
819
+ self.bert = BertModel(config, add_pooling_layer=False)
820
+ self.cls = BertOnlyMLMHead(config)
821
+
822
+ self.init_weights()
823
+
824
+ def get_output_embeddings(self):
825
+ return self.cls.predictions.decoder
826
+
827
+ def set_output_embeddings(self, new_embeddings):
828
+ self.cls.predictions.decoder = new_embeddings
829
+
830
+ def forward(
831
+ self,
832
+ input_ids=None,
833
+ attention_mask=None,
834
+ position_ids=None,
835
+ head_mask=None,
836
+ inputs_embeds=None,
837
+ encoder_hidden_states=None,
838
+ encoder_attention_mask=None,
839
+ labels=None,
840
+ past_key_values=None,
841
+ use_cache=None,
842
+ output_attentions=None,
843
+ output_hidden_states=None,
844
+ return_dict=None,
845
+ return_logits=False,
846
+ is_decoder=True,
847
+ reduction='mean',
848
+ mode='multimodal',
849
+ ):
850
+ r"""
851
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
852
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
853
+ the model is configured as a decoder.
854
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
855
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
856
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
857
+ - 1 for tokens that are **not masked**,
858
+ - 0 for tokens that are **masked**.
859
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
860
+ Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
861
+ ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
862
+ ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
863
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
864
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
865
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
866
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
867
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
868
+ use_cache (:obj:`bool`, `optional`):
869
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
870
+ decoding (see :obj:`past_key_values`).
871
+ Returns:
872
+ Example::
873
+ >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
874
+ >>> import torch
875
+ >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
876
+ >>> config = BertConfig.from_pretrained("bert-base-cased")
877
+ >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
878
+ >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
879
+ >>> outputs = model(**inputs)
880
+ >>> prediction_logits = outputs.logits
881
+ """
882
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
883
+ if labels is not None:
884
+ use_cache = False
885
+
886
+ outputs = self.bert(
887
+ input_ids,
888
+ attention_mask=attention_mask,
889
+ position_ids=position_ids,
890
+ head_mask=head_mask,
891
+ inputs_embeds=inputs_embeds,
892
+ encoder_hidden_states=encoder_hidden_states,
893
+ encoder_attention_mask=encoder_attention_mask,
894
+ past_key_values=past_key_values,
895
+ use_cache=use_cache,
896
+ output_attentions=output_attentions,
897
+ output_hidden_states=output_hidden_states,
898
+ return_dict=return_dict,
899
+ is_decoder=is_decoder,
900
+ mode=mode,
901
+ )
902
+
903
+ sequence_output = outputs[0]
904
+ prediction_scores = self.cls(sequence_output)
905
+
906
+ if return_logits:
907
+ return prediction_scores[:, :-1, :].contiguous()
908
+
909
+ lm_loss = None
910
+ if labels is not None:
911
+ # we are doing next-token prediction; shift prediction scores and input ids by one
912
+ shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
913
+ labels = labels[:, 1:].contiguous()
914
+ loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1)
915
+ lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
916
+ if reduction=='none':
917
+ lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)
918
+
919
+ if not return_dict:
920
+ output = (prediction_scores,) + outputs[2:]
921
+ return ((lm_loss,) + output) if lm_loss is not None else output
922
+
923
+ return CausalLMOutputWithCrossAttentions(
924
+ loss=lm_loss,
925
+ logits=prediction_scores,
926
+ past_key_values=outputs.past_key_values,
927
+ hidden_states=outputs.hidden_states,
928
+ attentions=outputs.attentions,
929
+ cross_attentions=outputs.cross_attentions,
930
+ )
931
+
932
+ def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
933
+ input_shape = input_ids.shape
934
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
935
+ if attention_mask is None:
936
+ attention_mask = input_ids.new_ones(input_shape)
937
+
938
+ # cut decoder_input_ids if past is used
939
+ if past is not None:
940
+ input_ids = input_ids[:, -1:]
941
+
942
+ return {
943
+ "input_ids": input_ids,
944
+ "attention_mask": attention_mask,
945
+ "past_key_values": past,
946
+ "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
947
+ "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
948
+ "is_decoder": True,
949
+ }
950
+
951
+ def _reorder_cache(self, past, beam_idx):
952
+ reordered_past = ()
953
+ for layer_past in past:
954
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
955
+ return reordered_past
extras/BLIP/models/nlvr_encoder.py ADDED
@@ -0,0 +1,843 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import warnings
4
+ from dataclasses import dataclass
5
+ from typing import Optional, Tuple
6
+
7
+ import torch
8
+ from torch import Tensor, device, dtype, nn
9
+ import torch.utils.checkpoint
10
+ from torch import nn
11
+ from torch.nn import CrossEntropyLoss
12
+ import torch.nn.functional as F
13
+
14
+ from transformers.activations import ACT2FN
15
+ from transformers.file_utils import (
16
+ ModelOutput,
17
+ )
18
+ from transformers.modeling_outputs import (
19
+ BaseModelOutputWithPastAndCrossAttentions,
20
+ BaseModelOutputWithPoolingAndCrossAttentions,
21
+ CausalLMOutputWithCrossAttentions,
22
+ MaskedLMOutput,
23
+ MultipleChoiceModelOutput,
24
+ NextSentencePredictorOutput,
25
+ QuestionAnsweringModelOutput,
26
+ SequenceClassifierOutput,
27
+ TokenClassifierOutput,
28
+ )
29
+ from transformers.modeling_utils import (
30
+ PreTrainedModel,
31
+ apply_chunking_to_forward,
32
+ find_pruneable_heads_and_indices,
33
+ prune_linear_layer,
34
+ )
35
+ from transformers.utils import logging
36
+ from transformers.models.bert.configuration_bert import BertConfig
37
+
38
+
39
+ logger = logging.get_logger(__name__)
40
+
41
+
42
+ class BertEmbeddings(nn.Module):
43
+ """Construct the embeddings from word and position embeddings."""
44
+
45
+ def __init__(self, config):
46
+ super().__init__()
47
+ self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
48
+ self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
49
+
50
+ # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
51
+ # any TensorFlow checkpoint file
52
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
53
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
54
+
55
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
56
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
57
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
58
+
59
+ self.config = config
60
+
61
+ def forward(
62
+ self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
63
+ ):
64
+ if input_ids is not None:
65
+ input_shape = input_ids.size()
66
+ else:
67
+ input_shape = inputs_embeds.size()[:-1]
68
+
69
+ seq_length = input_shape[1]
70
+
71
+ if position_ids is None:
72
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
73
+
74
+ if inputs_embeds is None:
75
+ inputs_embeds = self.word_embeddings(input_ids)
76
+
77
+ embeddings = inputs_embeds
78
+
79
+ if self.position_embedding_type == "absolute":
80
+ position_embeddings = self.position_embeddings(position_ids)
81
+ embeddings += position_embeddings
82
+ embeddings = self.LayerNorm(embeddings)
83
+ embeddings = self.dropout(embeddings)
84
+ return embeddings
85
+
86
+
87
+ class BertSelfAttention(nn.Module):
88
+ def __init__(self, config, is_cross_attention):
89
+ super().__init__()
90
+ self.config = config
91
+ if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
92
+ raise ValueError(
93
+ "The hidden size (%d) is not a multiple of the number of attention "
94
+ "heads (%d)" % (config.hidden_size, config.num_attention_heads)
95
+ )
96
+
97
+ self.num_attention_heads = config.num_attention_heads
98
+ self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
99
+ self.all_head_size = self.num_attention_heads * self.attention_head_size
100
+
101
+ self.query = nn.Linear(config.hidden_size, self.all_head_size)
102
+ if is_cross_attention:
103
+ self.key = nn.Linear(config.encoder_width, self.all_head_size)
104
+ self.value = nn.Linear(config.encoder_width, self.all_head_size)
105
+ else:
106
+ self.key = nn.Linear(config.hidden_size, self.all_head_size)
107
+ self.value = nn.Linear(config.hidden_size, self.all_head_size)
108
+
109
+ self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
110
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
111
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
112
+ self.max_position_embeddings = config.max_position_embeddings
113
+ self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
114
+ self.save_attention = False
115
+
116
+ def save_attn_gradients(self, attn_gradients):
117
+ self.attn_gradients = attn_gradients
118
+
119
+ def get_attn_gradients(self):
120
+ return self.attn_gradients
121
+
122
+ def save_attention_map(self, attention_map):
123
+ self.attention_map = attention_map
124
+
125
+ def get_attention_map(self):
126
+ return self.attention_map
127
+
128
+ def transpose_for_scores(self, x):
129
+ new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
130
+ x = x.view(*new_x_shape)
131
+ return x.permute(0, 2, 1, 3)
132
+
133
+ def forward(
134
+ self,
135
+ hidden_states,
136
+ attention_mask=None,
137
+ head_mask=None,
138
+ encoder_hidden_states=None,
139
+ encoder_attention_mask=None,
140
+ past_key_value=None,
141
+ output_attentions=False,
142
+ ):
143
+ mixed_query_layer = self.query(hidden_states)
144
+
145
+ # If this is instantiated as a cross-attention module, the keys
146
+ # and values come from an encoder; the attention mask needs to be
147
+ # such that the encoder's padding tokens are not attended to.
148
+ is_cross_attention = encoder_hidden_states is not None
149
+
150
+ if is_cross_attention:
151
+ key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
152
+ value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
153
+ attention_mask = encoder_attention_mask
154
+ elif past_key_value is not None:
155
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
156
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
157
+ key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
158
+ value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
159
+ else:
160
+ key_layer = self.transpose_for_scores(self.key(hidden_states))
161
+ value_layer = self.transpose_for_scores(self.value(hidden_states))
162
+
163
+ query_layer = self.transpose_for_scores(mixed_query_layer)
164
+
165
+ past_key_value = (key_layer, value_layer)
166
+
167
+ # Take the dot product between "query" and "key" to get the raw attention scores.
168
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
169
+
170
+ if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
171
+ seq_length = hidden_states.size()[1]
172
+ position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
173
+ position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
174
+ distance = position_ids_l - position_ids_r
175
+ positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
176
+ positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
177
+
178
+ if self.position_embedding_type == "relative_key":
179
+ relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
180
+ attention_scores = attention_scores + relative_position_scores
181
+ elif self.position_embedding_type == "relative_key_query":
182
+ relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
183
+ relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
184
+ attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
185
+
186
+ attention_scores = attention_scores / math.sqrt(self.attention_head_size)
187
+ if attention_mask is not None:
188
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
189
+ attention_scores = attention_scores + attention_mask
190
+
191
+ # Normalize the attention scores to probabilities.
192
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
193
+
194
+ if is_cross_attention and self.save_attention:
195
+ self.save_attention_map(attention_probs)
196
+ attention_probs.register_hook(self.save_attn_gradients)
197
+
198
+ # This is actually dropping out entire tokens to attend to, which might
199
+ # seem a bit unusual, but is taken from the original Transformer paper.
200
+ attention_probs_dropped = self.dropout(attention_probs)
201
+
202
+ # Mask heads if we want to
203
+ if head_mask is not None:
204
+ attention_probs_dropped = attention_probs_dropped * head_mask
205
+
206
+ context_layer = torch.matmul(attention_probs_dropped, value_layer)
207
+
208
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
209
+ new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
210
+ context_layer = context_layer.view(*new_context_layer_shape)
211
+
212
+ outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
213
+
214
+ outputs = outputs + (past_key_value,)
215
+ return outputs
216
+
217
+
218
+ class BertSelfOutput(nn.Module):
219
+ def __init__(self, config, twin=False, merge=False):
220
+ super().__init__()
221
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
222
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
223
+ if twin:
224
+ self.dense0 = nn.Linear(config.hidden_size, config.hidden_size)
225
+ self.dense1 = nn.Linear(config.hidden_size, config.hidden_size)
226
+ else:
227
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
228
+ if merge:
229
+ self.act = ACT2FN[config.hidden_act]
230
+ self.merge_layer = nn.Linear(config.hidden_size * 2, config.hidden_size)
231
+ self.merge = True
232
+ else:
233
+ self.merge = False
234
+
235
+ def forward(self, hidden_states, input_tensor):
236
+ if type(hidden_states) == list:
237
+ hidden_states0 = self.dense0(hidden_states[0])
238
+ hidden_states1 = self.dense1(hidden_states[1])
239
+ if self.merge:
240
+ #hidden_states = self.merge_layer(self.act(torch.cat([hidden_states0,hidden_states1],dim=-1)))
241
+ hidden_states = self.merge_layer(torch.cat([hidden_states0,hidden_states1],dim=-1))
242
+ else:
243
+ hidden_states = (hidden_states0+hidden_states1)/2
244
+ else:
245
+ hidden_states = self.dense(hidden_states)
246
+ hidden_states = self.dropout(hidden_states)
247
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
248
+ return hidden_states
249
+
250
+
251
+ class BertAttention(nn.Module):
252
+ def __init__(self, config, is_cross_attention=False, layer_num=-1):
253
+ super().__init__()
254
+ if is_cross_attention:
255
+ self.self0 = BertSelfAttention(config, is_cross_attention)
256
+ self.self1 = BertSelfAttention(config, is_cross_attention)
257
+ else:
258
+ self.self = BertSelfAttention(config, is_cross_attention)
259
+ self.output = BertSelfOutput(config, twin=is_cross_attention, merge=(is_cross_attention and layer_num>=6))
260
+ self.pruned_heads = set()
261
+
262
+ def prune_heads(self, heads):
263
+ if len(heads) == 0:
264
+ return
265
+ heads, index = find_pruneable_heads_and_indices(
266
+ heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
267
+ )
268
+
269
+ # Prune linear layers
270
+ self.self.query = prune_linear_layer(self.self.query, index)
271
+ self.self.key = prune_linear_layer(self.self.key, index)
272
+ self.self.value = prune_linear_layer(self.self.value, index)
273
+ self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
274
+
275
+ # Update hyper params and store pruned heads
276
+ self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
277
+ self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
278
+ self.pruned_heads = self.pruned_heads.union(heads)
279
+
280
+ def forward(
281
+ self,
282
+ hidden_states,
283
+ attention_mask=None,
284
+ head_mask=None,
285
+ encoder_hidden_states=None,
286
+ encoder_attention_mask=None,
287
+ past_key_value=None,
288
+ output_attentions=False,
289
+ ):
290
+ if type(encoder_hidden_states)==list:
291
+ self_outputs0 = self.self0(
292
+ hidden_states,
293
+ attention_mask,
294
+ head_mask,
295
+ encoder_hidden_states[0],
296
+ encoder_attention_mask[0],
297
+ past_key_value,
298
+ output_attentions,
299
+ )
300
+ self_outputs1 = self.self1(
301
+ hidden_states,
302
+ attention_mask,
303
+ head_mask,
304
+ encoder_hidden_states[1],
305
+ encoder_attention_mask[1],
306
+ past_key_value,
307
+ output_attentions,
308
+ )
309
+ attention_output = self.output([self_outputs0[0],self_outputs1[0]], hidden_states)
310
+
311
+ outputs = (attention_output,) + self_outputs0[1:] # add attentions if we output them
312
+ else:
313
+ self_outputs = self.self(
314
+ hidden_states,
315
+ attention_mask,
316
+ head_mask,
317
+ encoder_hidden_states,
318
+ encoder_attention_mask,
319
+ past_key_value,
320
+ output_attentions,
321
+ )
322
+ attention_output = self.output(self_outputs[0], hidden_states)
323
+ outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
324
+ return outputs
325
+
326
+
327
+ class BertIntermediate(nn.Module):
328
+ def __init__(self, config):
329
+ super().__init__()
330
+ self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
331
+ if isinstance(config.hidden_act, str):
332
+ self.intermediate_act_fn = ACT2FN[config.hidden_act]
333
+ else:
334
+ self.intermediate_act_fn = config.hidden_act
335
+
336
+ def forward(self, hidden_states):
337
+ hidden_states = self.dense(hidden_states)
338
+ hidden_states = self.intermediate_act_fn(hidden_states)
339
+ return hidden_states
340
+
341
+
342
+ class BertOutput(nn.Module):
343
+ def __init__(self, config):
344
+ super().__init__()
345
+ self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
346
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
347
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
348
+
349
+ def forward(self, hidden_states, input_tensor):
350
+ hidden_states = self.dense(hidden_states)
351
+ hidden_states = self.dropout(hidden_states)
352
+ hidden_states = self.LayerNorm(hidden_states + input_tensor)
353
+ return hidden_states
354
+
355
+
356
+ class BertLayer(nn.Module):
357
+ def __init__(self, config, layer_num):
358
+ super().__init__()
359
+ self.config = config
360
+ self.chunk_size_feed_forward = config.chunk_size_feed_forward
361
+ self.seq_len_dim = 1
362
+ self.attention = BertAttention(config)
363
+ self.layer_num = layer_num
364
+ if self.config.add_cross_attention:
365
+ self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention, layer_num=layer_num)
366
+ self.intermediate = BertIntermediate(config)
367
+ self.output = BertOutput(config)
368
+
369
+ def forward(
370
+ self,
371
+ hidden_states,
372
+ attention_mask=None,
373
+ head_mask=None,
374
+ encoder_hidden_states=None,
375
+ encoder_attention_mask=None,
376
+ past_key_value=None,
377
+ output_attentions=False,
378
+ mode=None,
379
+ ):
380
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
381
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
382
+ self_attention_outputs = self.attention(
383
+ hidden_states,
384
+ attention_mask,
385
+ head_mask,
386
+ output_attentions=output_attentions,
387
+ past_key_value=self_attn_past_key_value,
388
+ )
389
+ attention_output = self_attention_outputs[0]
390
+
391
+ outputs = self_attention_outputs[1:-1]
392
+ present_key_value = self_attention_outputs[-1]
393
+
394
+ if mode=='multimodal':
395
+ assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
396
+ cross_attention_outputs = self.crossattention(
397
+ attention_output,
398
+ attention_mask,
399
+ head_mask,
400
+ encoder_hidden_states,
401
+ encoder_attention_mask,
402
+ output_attentions=output_attentions,
403
+ )
404
+ attention_output = cross_attention_outputs[0]
405
+ outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
406
+ layer_output = apply_chunking_to_forward(
407
+ self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
408
+ )
409
+ outputs = (layer_output,) + outputs
410
+
411
+ outputs = outputs + (present_key_value,)
412
+
413
+ return outputs
414
+
415
+ def feed_forward_chunk(self, attention_output):
416
+ intermediate_output = self.intermediate(attention_output)
417
+ layer_output = self.output(intermediate_output, attention_output)
418
+ return layer_output
419
+
420
+
421
+ class BertEncoder(nn.Module):
422
+ def __init__(self, config):
423
+ super().__init__()
424
+ self.config = config
425
+ self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
426
+ self.gradient_checkpointing = False
427
+
428
+ def forward(
429
+ self,
430
+ hidden_states,
431
+ attention_mask=None,
432
+ head_mask=None,
433
+ encoder_hidden_states=None,
434
+ encoder_attention_mask=None,
435
+ past_key_values=None,
436
+ use_cache=None,
437
+ output_attentions=False,
438
+ output_hidden_states=False,
439
+ return_dict=True,
440
+ mode='multimodal',
441
+ ):
442
+ all_hidden_states = () if output_hidden_states else None
443
+ all_self_attentions = () if output_attentions else None
444
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
445
+
446
+ next_decoder_cache = () if use_cache else None
447
+
448
+ for i in range(self.config.num_hidden_layers):
449
+ layer_module = self.layer[i]
450
+ if output_hidden_states:
451
+ all_hidden_states = all_hidden_states + (hidden_states,)
452
+
453
+ layer_head_mask = head_mask[i] if head_mask is not None else None
454
+ past_key_value = past_key_values[i] if past_key_values is not None else None
455
+
456
+ if self.gradient_checkpointing and self.training:
457
+
458
+ if use_cache:
459
+ logger.warn(
460
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
461
+ )
462
+ use_cache = False
463
+
464
+ def create_custom_forward(module):
465
+ def custom_forward(*inputs):
466
+ return module(*inputs, past_key_value, output_attentions)
467
+
468
+ return custom_forward
469
+
470
+ layer_outputs = torch.utils.checkpoint.checkpoint(
471
+ create_custom_forward(layer_module),
472
+ hidden_states,
473
+ attention_mask,
474
+ layer_head_mask,
475
+ encoder_hidden_states,
476
+ encoder_attention_mask,
477
+ mode=mode,
478
+ )
479
+ else:
480
+ layer_outputs = layer_module(
481
+ hidden_states,
482
+ attention_mask,
483
+ layer_head_mask,
484
+ encoder_hidden_states,
485
+ encoder_attention_mask,
486
+ past_key_value,
487
+ output_attentions,
488
+ mode=mode,
489
+ )
490
+
491
+ hidden_states = layer_outputs[0]
492
+ if use_cache:
493
+ next_decoder_cache += (layer_outputs[-1],)
494
+ if output_attentions:
495
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
496
+
497
+ if output_hidden_states:
498
+ all_hidden_states = all_hidden_states + (hidden_states,)
499
+
500
+ if not return_dict:
501
+ return tuple(
502
+ v
503
+ for v in [
504
+ hidden_states,
505
+ next_decoder_cache,
506
+ all_hidden_states,
507
+ all_self_attentions,
508
+ all_cross_attentions,
509
+ ]
510
+ if v is not None
511
+ )
512
+ return BaseModelOutputWithPastAndCrossAttentions(
513
+ last_hidden_state=hidden_states,
514
+ past_key_values=next_decoder_cache,
515
+ hidden_states=all_hidden_states,
516
+ attentions=all_self_attentions,
517
+ cross_attentions=all_cross_attentions,
518
+ )
519
+
520
+
521
+ class BertPooler(nn.Module):
522
+ def __init__(self, config):
523
+ super().__init__()
524
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
525
+ self.activation = nn.Tanh()
526
+
527
+ def forward(self, hidden_states):
528
+ # We "pool" the model by simply taking the hidden state corresponding
529
+ # to the first token.
530
+ first_token_tensor = hidden_states[:, 0]
531
+ pooled_output = self.dense(first_token_tensor)
532
+ pooled_output = self.activation(pooled_output)
533
+ return pooled_output
534
+
535
+
536
+ class BertPredictionHeadTransform(nn.Module):
537
+ def __init__(self, config):
538
+ super().__init__()
539
+ self.dense = nn.Linear(config.hidden_size, config.hidden_size)
540
+ if isinstance(config.hidden_act, str):
541
+ self.transform_act_fn = ACT2FN[config.hidden_act]
542
+ else:
543
+ self.transform_act_fn = config.hidden_act
544
+ self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
545
+
546
+ def forward(self, hidden_states):
547
+ hidden_states = self.dense(hidden_states)
548
+ hidden_states = self.transform_act_fn(hidden_states)
549
+ hidden_states = self.LayerNorm(hidden_states)
550
+ return hidden_states
551
+
552
+
553
+ class BertLMPredictionHead(nn.Module):
554
+ def __init__(self, config):
555
+ super().__init__()
556
+ self.transform = BertPredictionHeadTransform(config)
557
+
558
+ # The output weights are the same as the input embeddings, but there is
559
+ # an output-only bias for each token.
560
+ self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
561
+
562
+ self.bias = nn.Parameter(torch.zeros(config.vocab_size))
563
+
564
+ # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
565
+ self.decoder.bias = self.bias
566
+
567
+ def forward(self, hidden_states):
568
+ hidden_states = self.transform(hidden_states)
569
+ hidden_states = self.decoder(hidden_states)
570
+ return hidden_states
571
+
572
+
573
+ class BertOnlyMLMHead(nn.Module):
574
+ def __init__(self, config):
575
+ super().__init__()
576
+ self.predictions = BertLMPredictionHead(config)
577
+
578
+ def forward(self, sequence_output):
579
+ prediction_scores = self.predictions(sequence_output)
580
+ return prediction_scores
581
+
582
+
583
+ class BertPreTrainedModel(PreTrainedModel):
584
+ """
585
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
586
+ models.
587
+ """
588
+
589
+ config_class = BertConfig
590
+ base_model_prefix = "bert"
591
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
592
+
593
+ def _init_weights(self, module):
594
+ """ Initialize the weights """
595
+ if isinstance(module, (nn.Linear, nn.Embedding)):
596
+ # Slightly different from the TF version which uses truncated_normal for initialization
597
+ # cf https://github.com/pytorch/pytorch/pull/5617
598
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
599
+ elif isinstance(module, nn.LayerNorm):
600
+ module.bias.data.zero_()
601
+ module.weight.data.fill_(1.0)
602
+ if isinstance(module, nn.Linear) and module.bias is not None:
603
+ module.bias.data.zero_()
604
+
605
+
606
+ class BertModel(BertPreTrainedModel):
607
+ """
608
+ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
609
+ cross-attention is added between the self-attention layers, following the architecture described in `Attention is
610
+ all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
611
+ Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
612
+ argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
613
+ input to the forward pass.
614
+ """
615
+
616
+ def __init__(self, config, add_pooling_layer=True):
617
+ super().__init__(config)
618
+ self.config = config
619
+
620
+ self.embeddings = BertEmbeddings(config)
621
+
622
+ self.encoder = BertEncoder(config)
623
+
624
+ self.pooler = BertPooler(config) if add_pooling_layer else None
625
+
626
+ self.init_weights()
627
+
628
+
629
+ def get_input_embeddings(self):
630
+ return self.embeddings.word_embeddings
631
+
632
+ def set_input_embeddings(self, value):
633
+ self.embeddings.word_embeddings = value
634
+
635
+ def _prune_heads(self, heads_to_prune):
636
+ """
637
+ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
638
+ class PreTrainedModel
639
+ """
640
+ for layer, heads in heads_to_prune.items():
641
+ self.encoder.layer[layer].attention.prune_heads(heads)
642
+
643
+
644
+ def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
645
+ """
646
+ Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
647
+
648
+ Arguments:
649
+ attention_mask (:obj:`torch.Tensor`):
650
+ Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
651
+ input_shape (:obj:`Tuple[int]`):
652
+ The shape of the input to the model.
653
+ device: (:obj:`torch.device`):
654
+ The device of the input to the model.
655
+
656
+ Returns:
657
+ :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
658
+ """
659
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
660
+ # ourselves in which case we just need to make it broadcastable to all heads.
661
+ if attention_mask.dim() == 3:
662
+ extended_attention_mask = attention_mask[:, None, :, :]
663
+ elif attention_mask.dim() == 2:
664
+ # Provided a padding mask of dimensions [batch_size, seq_length]
665
+ # - if the model is a decoder, apply a causal mask in addition to the padding mask
666
+ # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
667
+ if is_decoder:
668
+ batch_size, seq_length = input_shape
669
+
670
+ seq_ids = torch.arange(seq_length, device=device)
671
+ causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
672
+ # in case past_key_values are used we need to add a prefix ones mask to the causal mask
673
+ # causal and attention masks must have same type with pytorch version < 1.3
674
+ causal_mask = causal_mask.to(attention_mask.dtype)
675
+
676
+ if causal_mask.shape[1] < attention_mask.shape[1]:
677
+ prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
678
+ causal_mask = torch.cat(
679
+ [
680
+ torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
681
+ causal_mask,
682
+ ],
683
+ axis=-1,
684
+ )
685
+
686
+ extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
687
+ else:
688
+ extended_attention_mask = attention_mask[:, None, None, :]
689
+ else:
690
+ raise ValueError(
691
+ "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
692
+ input_shape, attention_mask.shape
693
+ )
694
+ )
695
+
696
+ # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
697
+ # masked positions, this operation will create a tensor which is 0.0 for
698
+ # positions we want to attend and -10000.0 for masked positions.
699
+ # Since we are adding it to the raw scores before the softmax, this is
700
+ # effectively the same as removing these entirely.
701
+ extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
702
+ extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
703
+ return extended_attention_mask
704
+
705
+ def forward(
706
+ self,
707
+ input_ids=None,
708
+ attention_mask=None,
709
+ position_ids=None,
710
+ head_mask=None,
711
+ inputs_embeds=None,
712
+ encoder_embeds=None,
713
+ encoder_hidden_states=None,
714
+ encoder_attention_mask=None,
715
+ past_key_values=None,
716
+ use_cache=None,
717
+ output_attentions=None,
718
+ output_hidden_states=None,
719
+ return_dict=None,
720
+ is_decoder=False,
721
+ mode='multimodal',
722
+ ):
723
+ r"""
724
+ encoder_hidden_states (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
725
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
726
+ the model is configured as a decoder.
727
+ encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
728
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
729
+ the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
730
+ - 1 for tokens that are **not masked**,
731
+ - 0 for tokens that are **masked**.
732
+ past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
733
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
734
+ If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
735
+ (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
736
+ instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
737
+ use_cache (:obj:`bool`, `optional`):
738
+ If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
739
+ decoding (see :obj:`past_key_values`).
740
+ """
741
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
742
+ output_hidden_states = (
743
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
744
+ )
745
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
746
+
747
+ if is_decoder:
748
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
749
+ else:
750
+ use_cache = False
751
+
752
+ if input_ids is not None and inputs_embeds is not None:
753
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
754
+ elif input_ids is not None:
755
+ input_shape = input_ids.size()
756
+ batch_size, seq_length = input_shape
757
+ device = input_ids.device
758
+ elif inputs_embeds is not None:
759
+ input_shape = inputs_embeds.size()[:-1]
760
+ batch_size, seq_length = input_shape
761
+ device = inputs_embeds.device
762
+ elif encoder_embeds is not None:
763
+ input_shape = encoder_embeds.size()[:-1]
764
+ batch_size, seq_length = input_shape
765
+ device = encoder_embeds.device
766
+ else:
767
+ raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
768
+
769
+ # past_key_values_length
770
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
771
+
772
+ if attention_mask is None:
773
+ attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
774
+
775
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
776
+ # ourselves in which case we just need to make it broadcastable to all heads.
777
+ extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape,
778
+ device, is_decoder)
779
+
780
+ # If a 2D or 3D attention mask is provided for the cross-attention
781
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
782
+ if encoder_hidden_states is not None:
783
+ if type(encoder_hidden_states) == list:
784
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
785
+ else:
786
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
787
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
788
+
789
+ if type(encoder_attention_mask) == list:
790
+ encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
791
+ elif encoder_attention_mask is None:
792
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
793
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
794
+ else:
795
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
796
+ else:
797
+ encoder_extended_attention_mask = None
798
+
799
+ # Prepare head mask if needed
800
+ # 1.0 in head_mask indicate we keep the head
801
+ # attention_probs has shape bsz x n_heads x N x N
802
+ # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
803
+ # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
804
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
805
+
806
+ if encoder_embeds is None:
807
+ embedding_output = self.embeddings(
808
+ input_ids=input_ids,
809
+ position_ids=position_ids,
810
+ inputs_embeds=inputs_embeds,
811
+ past_key_values_length=past_key_values_length,
812
+ )
813
+ else:
814
+ embedding_output = encoder_embeds
815
+
816
+ encoder_outputs = self.encoder(
817
+ embedding_output,
818
+ attention_mask=extended_attention_mask,
819
+ head_mask=head_mask,
820
+ encoder_hidden_states=encoder_hidden_states,
821
+ encoder_attention_mask=encoder_extended_attention_mask,
822
+ past_key_values=past_key_values,
823
+ use_cache=use_cache,
824
+ output_attentions=output_attentions,
825
+ output_hidden_states=output_hidden_states,
826
+ return_dict=return_dict,
827
+ mode=mode,
828
+ )
829
+ sequence_output = encoder_outputs[0]
830
+ pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
831
+
832
+ if not return_dict:
833
+ return (sequence_output, pooled_output) + encoder_outputs[1:]
834
+
835
+ return BaseModelOutputWithPoolingAndCrossAttentions(
836
+ last_hidden_state=sequence_output,
837
+ pooler_output=pooled_output,
838
+ past_key_values=encoder_outputs.past_key_values,
839
+ hidden_states=encoder_outputs.hidden_states,
840
+ attentions=encoder_outputs.attentions,
841
+ cross_attentions=encoder_outputs.cross_attentions,
842
+ )
843
+
extras/BLIP/models/vit.py ADDED
@@ -0,0 +1,308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''
2
+ * Copyright (c) 2022, salesforce.com, inc.
3
+ * All rights reserved.
4
+ * SPDX-License-Identifier: BSD-3-Clause
5
+ * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
6
+ * By Junnan Li
7
+ * Based on timm code base
8
+ * https://github.com/rwightman/pytorch-image-models/tree/master/timm
9
+ '''
10
+
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+ from functools import partial
15
+
16
+ from timm.models.vision_transformer import _cfg, PatchEmbed
17
+ from timm.models.registry import register_model
18
+ from timm.models.layers import trunc_normal_, DropPath
19
+ from timm.models.helpers import named_apply, adapt_input_conv
20
+
21
+
22
+ def checkpoint_wrapper(x):
23
+ return x
24
+
25
+
26
+ class Mlp(nn.Module):
27
+ """ MLP as used in Vision Transformer, MLP-Mixer and related networks
28
+ """
29
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
30
+ super().__init__()
31
+ out_features = out_features or in_features
32
+ hidden_features = hidden_features or in_features
33
+ self.fc1 = nn.Linear(in_features, hidden_features)
34
+ self.act = act_layer()
35
+ self.fc2 = nn.Linear(hidden_features, out_features)
36
+ self.drop = nn.Dropout(drop)
37
+
38
+ def forward(self, x):
39
+ x = self.fc1(x)
40
+ x = self.act(x)
41
+ x = self.drop(x)
42
+ x = self.fc2(x)
43
+ x = self.drop(x)
44
+ return x
45
+
46
+
47
+ class Attention(nn.Module):
48
+ def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
49
+ super().__init__()
50
+ self.num_heads = num_heads
51
+ head_dim = dim // num_heads
52
+ # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
53
+ self.scale = qk_scale or head_dim ** -0.5
54
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
55
+ self.attn_drop = nn.Dropout(attn_drop)
56
+ self.proj = nn.Linear(dim, dim)
57
+ self.proj_drop = nn.Dropout(proj_drop)
58
+ self.attn_gradients = None
59
+ self.attention_map = None
60
+
61
+ def save_attn_gradients(self, attn_gradients):
62
+ self.attn_gradients = attn_gradients
63
+
64
+ def get_attn_gradients(self):
65
+ return self.attn_gradients
66
+
67
+ def save_attention_map(self, attention_map):
68
+ self.attention_map = attention_map
69
+
70
+ def get_attention_map(self):
71
+ return self.attention_map
72
+
73
+ def forward(self, x, register_hook=False):
74
+ B, N, C = x.shape
75
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
76
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
77
+
78
+ attn = (q @ k.transpose(-2, -1)) * self.scale
79
+ attn = attn.softmax(dim=-1)
80
+ attn = self.attn_drop(attn)
81
+
82
+ if register_hook:
83
+ self.save_attention_map(attn)
84
+ attn.register_hook(self.save_attn_gradients)
85
+
86
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
87
+ x = self.proj(x)
88
+ x = self.proj_drop(x)
89
+ return x
90
+
91
+
92
+ class Block(nn.Module):
93
+
94
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
95
+ drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
96
+ super().__init__()
97
+ self.norm1 = norm_layer(dim)
98
+ self.attn = Attention(
99
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
100
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
101
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
102
+ self.norm2 = norm_layer(dim)
103
+ mlp_hidden_dim = int(dim * mlp_ratio)
104
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
105
+
106
+ if use_grad_checkpointing:
107
+ self.attn = checkpoint_wrapper(self.attn)
108
+ self.mlp = checkpoint_wrapper(self.mlp)
109
+
110
+ def forward(self, x, register_hook=False):
111
+ x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
112
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
113
+ return x
114
+
115
+
116
+ class VisionTransformer(nn.Module):
117
+ """ Vision Transformer
118
+ A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` -
119
+ https://arxiv.org/abs/2010.11929
120
+ """
121
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
122
+ num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
123
+ drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None,
124
+ use_grad_checkpointing=False, ckpt_layer=0):
125
+ """
126
+ Args:
127
+ img_size (int, tuple): input image size
128
+ patch_size (int, tuple): patch size
129
+ in_chans (int): number of input channels
130
+ num_classes (int): number of classes for classification head
131
+ embed_dim (int): embedding dimension
132
+ depth (int): depth of transformer
133
+ num_heads (int): number of attention heads
134
+ mlp_ratio (int): ratio of mlp hidden dim to embedding dim
135
+ qkv_bias (bool): enable bias for qkv if True
136
+ qk_scale (float): override default qk scale of head_dim ** -0.5 if set
137
+ representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
138
+ drop_rate (float): dropout rate
139
+ attn_drop_rate (float): attention dropout rate
140
+ drop_path_rate (float): stochastic depth rate
141
+ norm_layer: (nn.Module): normalization layer
142
+ """
143
+ super().__init__()
144
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
145
+ norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
146
+
147
+ self.patch_embed = PatchEmbed(
148
+ img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
149
+
150
+ num_patches = self.patch_embed.num_patches
151
+
152
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
153
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
154
+ self.pos_drop = nn.Dropout(p=drop_rate)
155
+
156
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
157
+ self.blocks = nn.ModuleList([
158
+ Block(
159
+ dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
160
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
161
+ use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
162
+ )
163
+ for i in range(depth)])
164
+ self.norm = norm_layer(embed_dim)
165
+
166
+ trunc_normal_(self.pos_embed, std=.02)
167
+ trunc_normal_(self.cls_token, std=.02)
168
+ self.apply(self._init_weights)
169
+
170
+ def _init_weights(self, m):
171
+ if isinstance(m, nn.Linear):
172
+ trunc_normal_(m.weight, std=.02)
173
+ if isinstance(m, nn.Linear) and m.bias is not None:
174
+ nn.init.constant_(m.bias, 0)
175
+ elif isinstance(m, nn.LayerNorm):
176
+ nn.init.constant_(m.bias, 0)
177
+ nn.init.constant_(m.weight, 1.0)
178
+
179
+ @torch.jit.ignore
180
+ def no_weight_decay(self):
181
+ return {'pos_embed', 'cls_token'}
182
+
183
+ def forward(self, x, register_blk=-1):
184
+ B = x.shape[0]
185
+ x = self.patch_embed(x)
186
+
187
+ cls_tokens = self.cls_token.expand(B, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
188
+ x = torch.cat((cls_tokens, x), dim=1)
189
+
190
+ x = x + self.pos_embed[:,:x.size(1),:]
191
+ x = self.pos_drop(x)
192
+
193
+ for i,blk in enumerate(self.blocks):
194
+ x = blk(x, register_blk==i)
195
+ x = self.norm(x)
196
+
197
+ return x
198
+
199
+ @torch.jit.ignore()
200
+ def load_pretrained(self, checkpoint_path, prefix=''):
201
+ _load_weights(self, checkpoint_path, prefix)
202
+
203
+
204
+ @torch.no_grad()
205
+ def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
206
+ """ Load weights from .npz checkpoints for official Google Brain Flax implementation
207
+ """
208
+ import numpy as np
209
+
210
+ def _n2p(w, t=True):
211
+ if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
212
+ w = w.flatten()
213
+ if t:
214
+ if w.ndim == 4:
215
+ w = w.transpose([3, 2, 0, 1])
216
+ elif w.ndim == 3:
217
+ w = w.transpose([2, 0, 1])
218
+ elif w.ndim == 2:
219
+ w = w.transpose([1, 0])
220
+ return torch.from_numpy(w)
221
+
222
+ w = np.load(checkpoint_path)
223
+ if not prefix and 'opt/target/embedding/kernel' in w:
224
+ prefix = 'opt/target/'
225
+
226
+ if hasattr(model.patch_embed, 'backbone'):
227
+ # hybrid
228
+ backbone = model.patch_embed.backbone
229
+ stem_only = not hasattr(backbone, 'stem')
230
+ stem = backbone if stem_only else backbone.stem
231
+ stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
232
+ stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
233
+ stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
234
+ if not stem_only:
235
+ for i, stage in enumerate(backbone.stages):
236
+ for j, block in enumerate(stage.blocks):
237
+ bp = f'{prefix}block{i + 1}/unit{j + 1}/'
238
+ for r in range(3):
239
+ getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
240
+ getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
241
+ getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
242
+ if block.downsample is not None:
243
+ block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
244
+ block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
245
+ block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
246
+ embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
247
+ else:
248
+ embed_conv_w = adapt_input_conv(
249
+ model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
250
+ model.patch_embed.proj.weight.copy_(embed_conv_w)
251
+ model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
252
+ model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
253
+ pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
254
+ if pos_embed_w.shape != model.pos_embed.shape:
255
+ pos_embed_w = resize_pos_embed( # resize pos embedding when different size from pretrained weights
256
+ pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
257
+ model.pos_embed.copy_(pos_embed_w)
258
+ model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
259
+ model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
260
+ # if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
261
+ # model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
262
+ # model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
263
+ # if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
264
+ # model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
265
+ # model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
266
+ for i, block in enumerate(model.blocks.children()):
267
+ block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
268
+ mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
269
+ block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
270
+ block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
271
+ block.attn.qkv.weight.copy_(torch.cat([
272
+ _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
273
+ block.attn.qkv.bias.copy_(torch.cat([
274
+ _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
275
+ block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
276
+ block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
277
+ for r in range(2):
278
+ getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
279
+ getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
280
+ block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
281
+ block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
282
+
283
+
284
+ def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):
285
+ # interpolate position embedding
286
+ embedding_size = pos_embed_checkpoint.shape[-1]
287
+ num_patches = visual_encoder.patch_embed.num_patches
288
+ num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
289
+ # height (== width) for the checkpoint position embedding
290
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
291
+ # height (== width) for the new position embedding
292
+ new_size = int(num_patches ** 0.5)
293
+
294
+ if orig_size!=new_size:
295
+ # class_token and dist_token are kept unchanged
296
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
297
+ # only the position tokens are interpolated
298
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
299
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
300
+ pos_tokens = torch.nn.functional.interpolate(
301
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
302
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
303
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
304
+ print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
305
+
306
+ return new_pos_embed
307
+ else:
308
+ return pos_embed_checkpoint
extras/expansion.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Fooocus GPT2 Expansion
2
+ # Algorithm created by Lvmin Zhang at 2023, Stanford
3
+ # If used inside Fooocus, any use is permitted.
4
+ # If used outside Fooocus, only non-commercial use is permitted (CC-By NC 4.0).
5
+ # This applies to the word list, vocab, model, and algorithm.
6
+
7
+
8
+ import os
9
+ import torch
10
+ import math
11
+ import ldm_patched.modules.model_management as model_management
12
+
13
+ from transformers.generation.logits_process import LogitsProcessorList
14
+ from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
15
+ from modules.config import path_fooocus_expansion
16
+ from ldm_patched.modules.model_patcher import ModelPatcher
17
+
18
+
19
+ # limitation of np.random.seed(), called from transformers.set_seed()
20
+ SEED_LIMIT_NUMPY = 2**32
21
+ neg_inf = - 8192.0
22
+
23
+
24
+ def safe_str(x):
25
+ x = str(x)
26
+ for _ in range(16):
27
+ x = x.replace(' ', ' ')
28
+ return x.strip(",. \r\n")
29
+
30
+
31
+ def remove_pattern(x, pattern):
32
+ for p in pattern:
33
+ x = x.replace(p, '')
34
+ return x
35
+
36
+
37
+ class FooocusExpansion:
38
+ def __init__(self):
39
+ self.tokenizer = AutoTokenizer.from_pretrained(path_fooocus_expansion)
40
+
41
+ positive_words = open(os.path.join(path_fooocus_expansion, 'positive.txt'),
42
+ encoding='utf-8').read().splitlines()
43
+ positive_words = ['Ġ' + x.lower() for x in positive_words if x != '']
44
+
45
+ self.logits_bias = torch.zeros((1, len(self.tokenizer.vocab)), dtype=torch.float32) + neg_inf
46
+
47
+ debug_list = []
48
+ for k, v in self.tokenizer.vocab.items():
49
+ if k in positive_words:
50
+ self.logits_bias[0, v] = 0
51
+ debug_list.append(k[1:])
52
+
53
+ print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.')
54
+
55
+ # debug_list = '\n'.join(sorted(debug_list))
56
+ # print(debug_list)
57
+
58
+ # t11 = self.tokenizer(',', return_tensors="np")
59
+ # t198 = self.tokenizer('\n', return_tensors="np")
60
+ # eos = self.tokenizer.eos_token_id
61
+
62
+ self.model = AutoModelForCausalLM.from_pretrained(path_fooocus_expansion)
63
+ self.model.eval()
64
+
65
+ load_device = model_management.text_encoder_device()
66
+ offload_device = model_management.text_encoder_offload_device()
67
+
68
+ # MPS hack
69
+ if model_management.is_device_mps(load_device):
70
+ load_device = torch.device('cpu')
71
+ offload_device = torch.device('cpu')
72
+
73
+ use_fp16 = model_management.should_use_fp16(device=load_device)
74
+
75
+ if use_fp16:
76
+ self.model.half()
77
+
78
+ self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
79
+ print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.')
80
+
81
+ @torch.no_grad()
82
+ @torch.inference_mode()
83
+ def logits_processor(self, input_ids, scores):
84
+ assert scores.ndim == 2 and scores.shape[0] == 1
85
+ self.logits_bias = self.logits_bias.to(scores)
86
+
87
+ bias = self.logits_bias.clone()
88
+ bias[0, input_ids[0].to(bias.device).long()] = neg_inf
89
+ bias[0, 11] = 0
90
+
91
+ return scores + bias
92
+
93
+ @torch.no_grad()
94
+ @torch.inference_mode()
95
+ def __call__(self, prompt, seed):
96
+ if prompt == '':
97
+ return ''
98
+
99
+ if self.patcher.current_device != self.patcher.load_device:
100
+ print('Fooocus Expansion loaded by itself.')
101
+ model_management.load_model_gpu(self.patcher)
102
+
103
+ seed = int(seed) % SEED_LIMIT_NUMPY
104
+ set_seed(seed)
105
+ prompt = safe_str(prompt) + ','
106
+
107
+ tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
108
+ tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
109
+ tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device)
110
+
111
+ current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1])
112
+ max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0))
113
+ max_new_tokens = max_token_length - current_token_length
114
+
115
+ # https://huggingface.co/blog/introducing-csearch
116
+ # https://huggingface.co/docs/transformers/generation_strategies
117
+ features = self.model.generate(**tokenized_kwargs,
118
+ top_k=100,
119
+ max_new_tokens=max_new_tokens,
120
+ do_sample=True,
121
+ logits_processor=LogitsProcessorList([self.logits_processor]))
122
+
123
+ response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
124
+ result = safe_str(response[0])
125
+
126
+ return result
extras/face_crop.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import modules.config
4
+
5
+
6
+ faceRestoreHelper = None
7
+
8
+
9
+ def align_warp_face(self, landmark, border_mode='constant'):
10
+ affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
11
+ self.affine_matrices.append(affine_matrix)
12
+ if border_mode == 'constant':
13
+ border_mode = cv2.BORDER_CONSTANT
14
+ elif border_mode == 'reflect101':
15
+ border_mode = cv2.BORDER_REFLECT101
16
+ elif border_mode == 'reflect':
17
+ border_mode = cv2.BORDER_REFLECT
18
+ input_img = self.input_img
19
+ cropped_face = cv2.warpAffine(input_img, affine_matrix, self.face_size,
20
+ borderMode=border_mode, borderValue=(135, 133, 132))
21
+ return cropped_face
22
+
23
+
24
+ def crop_image(img_rgb):
25
+ global faceRestoreHelper
26
+
27
+ if faceRestoreHelper is None:
28
+ from extras.facexlib.utils.face_restoration_helper import FaceRestoreHelper
29
+ faceRestoreHelper = FaceRestoreHelper(
30
+ upscale_factor=1,
31
+ model_rootpath=modules.config.path_controlnet,
32
+ device='cpu' # use cpu is safer since we are out of memory management
33
+ )
34
+
35
+ faceRestoreHelper.clean_all()
36
+ faceRestoreHelper.read_image(np.ascontiguousarray(img_rgb[:, :, ::-1].copy()))
37
+ faceRestoreHelper.get_face_landmarks_5()
38
+
39
+ landmarks = faceRestoreHelper.all_landmarks_5
40
+ # landmarks are already sorted with confidence.
41
+
42
+ if len(landmarks) == 0:
43
+ print('No face detected')
44
+ return img_rgb
45
+ else:
46
+ print(f'Detected {len(landmarks)} faces')
47
+
48
+ result = align_warp_face(faceRestoreHelper, landmarks[0])
49
+
50
+ return np.ascontiguousarray(result[:, :, ::-1].copy())
extras/facexlib/detection/__init__.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from copy import deepcopy
3
+
4
+ from extras.facexlib.utils import load_file_from_url
5
+ from .retinaface import RetinaFace
6
+
7
+
8
+ def init_detection_model(model_name, half=False, device='cuda', model_rootpath=None):
9
+ if model_name == 'retinaface_resnet50':
10
+ model = RetinaFace(network_name='resnet50', half=half, device=device)
11
+ model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth'
12
+ elif model_name == 'retinaface_mobile0.25':
13
+ model = RetinaFace(network_name='mobile0.25', half=half, device=device)
14
+ model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth'
15
+ else:
16
+ raise NotImplementedError(f'{model_name} is not implemented.')
17
+
18
+ model_path = load_file_from_url(
19
+ url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath)
20
+
21
+ # TODO: clean pretrained model
22
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
23
+ # remove unnecessary 'module.'
24
+ for k, v in deepcopy(load_net).items():
25
+ if k.startswith('module.'):
26
+ load_net[k[7:]] = v
27
+ load_net.pop(k)
28
+ model.load_state_dict(load_net, strict=True)
29
+ model.eval()
30
+ model = model.to(device)
31
+ return model
extras/facexlib/detection/align_trans.py ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+ from .matlab_cp2tform import get_similarity_transform_for_cv2
5
+
6
+ # reference facial points, a list of coordinates (x,y)
7
+ REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278],
8
+ [33.54930115, 92.3655014], [62.72990036, 92.20410156]]
9
+
10
+ DEFAULT_CROP_SIZE = (96, 112)
11
+
12
+
13
+ class FaceWarpException(Exception):
14
+
15
+ def __str__(self):
16
+ return 'In File {}:{}'.format(__file__, super.__str__(self))
17
+
18
+
19
+ def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False):
20
+ """
21
+ Function:
22
+ ----------
23
+ get reference 5 key points according to crop settings:
24
+ 0. Set default crop_size:
25
+ if default_square:
26
+ crop_size = (112, 112)
27
+ else:
28
+ crop_size = (96, 112)
29
+ 1. Pad the crop_size by inner_padding_factor in each side;
30
+ 2. Resize crop_size into (output_size - outer_padding*2),
31
+ pad into output_size with outer_padding;
32
+ 3. Output reference_5point;
33
+ Parameters:
34
+ ----------
35
+ @output_size: (w, h) or None
36
+ size of aligned face image
37
+ @inner_padding_factor: (w_factor, h_factor)
38
+ padding factor for inner (w, h)
39
+ @outer_padding: (w_pad, h_pad)
40
+ each row is a pair of coordinates (x, y)
41
+ @default_square: True or False
42
+ if True:
43
+ default crop_size = (112, 112)
44
+ else:
45
+ default crop_size = (96, 112);
46
+ !!! make sure, if output_size is not None:
47
+ (output_size - outer_padding)
48
+ = some_scale * (default crop_size * (1.0 +
49
+ inner_padding_factor))
50
+ Returns:
51
+ ----------
52
+ @reference_5point: 5x2 np.array
53
+ each row is a pair of transformed coordinates (x, y)
54
+ """
55
+
56
+ tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
57
+ tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
58
+
59
+ # 0) make the inner region a square
60
+ if default_square:
61
+ size_diff = max(tmp_crop_size) - tmp_crop_size
62
+ tmp_5pts += size_diff / 2
63
+ tmp_crop_size += size_diff
64
+
65
+ if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]):
66
+
67
+ return tmp_5pts
68
+
69
+ if (inner_padding_factor == 0 and outer_padding == (0, 0)):
70
+ if output_size is None:
71
+ return tmp_5pts
72
+ else:
73
+ raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size))
74
+
75
+ # check output size
76
+ if not (0 <= inner_padding_factor <= 1.0):
77
+ raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
78
+
79
+ if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None):
80
+ output_size = tmp_crop_size * \
81
+ (1 + inner_padding_factor * 2).astype(np.int32)
82
+ output_size += np.array(outer_padding)
83
+ if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]):
84
+ raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])')
85
+
86
+ # 1) pad the inner region according inner_padding_factor
87
+ if inner_padding_factor > 0:
88
+ size_diff = tmp_crop_size * inner_padding_factor * 2
89
+ tmp_5pts += size_diff / 2
90
+ tmp_crop_size += np.round(size_diff).astype(np.int32)
91
+
92
+ # 2) resize the padded inner region
93
+ size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
94
+
95
+ if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
96
+ raise FaceWarpException('Must have (output_size - outer_padding)'
97
+ '= some_scale * (crop_size * (1.0 + inner_padding_factor)')
98
+
99
+ scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
100
+ tmp_5pts = tmp_5pts * scale_factor
101
+ # size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
102
+ # tmp_5pts = tmp_5pts + size_diff / 2
103
+ tmp_crop_size = size_bf_outer_pad
104
+
105
+ # 3) add outer_padding to make output_size
106
+ reference_5point = tmp_5pts + np.array(outer_padding)
107
+ tmp_crop_size = output_size
108
+
109
+ return reference_5point
110
+
111
+
112
+ def get_affine_transform_matrix(src_pts, dst_pts):
113
+ """
114
+ Function:
115
+ ----------
116
+ get affine transform matrix 'tfm' from src_pts to dst_pts
117
+ Parameters:
118
+ ----------
119
+ @src_pts: Kx2 np.array
120
+ source points matrix, each row is a pair of coordinates (x, y)
121
+ @dst_pts: Kx2 np.array
122
+ destination points matrix, each row is a pair of coordinates (x, y)
123
+ Returns:
124
+ ----------
125
+ @tfm: 2x3 np.array
126
+ transform matrix from src_pts to dst_pts
127
+ """
128
+
129
+ tfm = np.float32([[1, 0, 0], [0, 1, 0]])
130
+ n_pts = src_pts.shape[0]
131
+ ones = np.ones((n_pts, 1), src_pts.dtype)
132
+ src_pts_ = np.hstack([src_pts, ones])
133
+ dst_pts_ = np.hstack([dst_pts, ones])
134
+
135
+ A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
136
+
137
+ if rank == 3:
138
+ tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]])
139
+ elif rank == 2:
140
+ tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]])
141
+
142
+ return tfm
143
+
144
+
145
+ def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'):
146
+ """
147
+ Function:
148
+ ----------
149
+ apply affine transform 'trans' to uv
150
+ Parameters:
151
+ ----------
152
+ @src_img: 3x3 np.array
153
+ input image
154
+ @facial_pts: could be
155
+ 1)a list of K coordinates (x,y)
156
+ or
157
+ 2) Kx2 or 2xK np.array
158
+ each row or col is a pair of coordinates (x, y)
159
+ @reference_pts: could be
160
+ 1) a list of K coordinates (x,y)
161
+ or
162
+ 2) Kx2 or 2xK np.array
163
+ each row or col is a pair of coordinates (x, y)
164
+ or
165
+ 3) None
166
+ if None, use default reference facial points
167
+ @crop_size: (w, h)
168
+ output face image size
169
+ @align_type: transform type, could be one of
170
+ 1) 'similarity': use similarity transform
171
+ 2) 'cv2_affine': use the first 3 points to do affine transform,
172
+ by calling cv2.getAffineTransform()
173
+ 3) 'affine': use all points to do affine transform
174
+ Returns:
175
+ ----------
176
+ @face_img: output face image with size (w, h) = @crop_size
177
+ """
178
+
179
+ if reference_pts is None:
180
+ if crop_size[0] == 96 and crop_size[1] == 112:
181
+ reference_pts = REFERENCE_FACIAL_POINTS
182
+ else:
183
+ default_square = False
184
+ inner_padding_factor = 0
185
+ outer_padding = (0, 0)
186
+ output_size = crop_size
187
+
188
+ reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding,
189
+ default_square)
190
+
191
+ ref_pts = np.float32(reference_pts)
192
+ ref_pts_shp = ref_pts.shape
193
+ if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
194
+ raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2')
195
+
196
+ if ref_pts_shp[0] == 2:
197
+ ref_pts = ref_pts.T
198
+
199
+ src_pts = np.float32(facial_pts)
200
+ src_pts_shp = src_pts.shape
201
+ if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
202
+ raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2')
203
+
204
+ if src_pts_shp[0] == 2:
205
+ src_pts = src_pts.T
206
+
207
+ if src_pts.shape != ref_pts.shape:
208
+ raise FaceWarpException('facial_pts and reference_pts must have the same shape')
209
+
210
+ if align_type == 'cv2_affine':
211
+ tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
212
+ elif align_type == 'affine':
213
+ tfm = get_affine_transform_matrix(src_pts, ref_pts)
214
+ else:
215
+ tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
216
+
217
+ face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))
218
+
219
+ return face_img
extras/facexlib/detection/matlab_cp2tform.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numpy.linalg import inv, lstsq
3
+ from numpy.linalg import matrix_rank as rank
4
+ from numpy.linalg import norm
5
+
6
+
7
+ class MatlabCp2tormException(Exception):
8
+
9
+ def __str__(self):
10
+ return 'In File {}:{}'.format(__file__, super.__str__(self))
11
+
12
+
13
+ def tformfwd(trans, uv):
14
+ """
15
+ Function:
16
+ ----------
17
+ apply affine transform 'trans' to uv
18
+
19
+ Parameters:
20
+ ----------
21
+ @trans: 3x3 np.array
22
+ transform matrix
23
+ @uv: Kx2 np.array
24
+ each row is a pair of coordinates (x, y)
25
+
26
+ Returns:
27
+ ----------
28
+ @xy: Kx2 np.array
29
+ each row is a pair of transformed coordinates (x, y)
30
+ """
31
+ uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
32
+ xy = np.dot(uv, trans)
33
+ xy = xy[:, 0:-1]
34
+ return xy
35
+
36
+
37
+ def tforminv(trans, uv):
38
+ """
39
+ Function:
40
+ ----------
41
+ apply the inverse of affine transform 'trans' to uv
42
+
43
+ Parameters:
44
+ ----------
45
+ @trans: 3x3 np.array
46
+ transform matrix
47
+ @uv: Kx2 np.array
48
+ each row is a pair of coordinates (x, y)
49
+
50
+ Returns:
51
+ ----------
52
+ @xy: Kx2 np.array
53
+ each row is a pair of inverse-transformed coordinates (x, y)
54
+ """
55
+ Tinv = inv(trans)
56
+ xy = tformfwd(Tinv, uv)
57
+ return xy
58
+
59
+
60
+ def findNonreflectiveSimilarity(uv, xy, options=None):
61
+ options = {'K': 2}
62
+
63
+ K = options['K']
64
+ M = xy.shape[0]
65
+ x = xy[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
66
+ y = xy[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
67
+
68
+ tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
69
+ tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
70
+ X = np.vstack((tmp1, tmp2))
71
+
72
+ u = uv[:, 0].reshape((-1, 1)) # use reshape to keep a column vector
73
+ v = uv[:, 1].reshape((-1, 1)) # use reshape to keep a column vector
74
+ U = np.vstack((u, v))
75
+
76
+ # We know that X * r = U
77
+ if rank(X) >= 2 * K:
78
+ r, _, _, _ = lstsq(X, U, rcond=-1)
79
+ r = np.squeeze(r)
80
+ else:
81
+ raise Exception('cp2tform:twoUniquePointsReq')
82
+ sc = r[0]
83
+ ss = r[1]
84
+ tx = r[2]
85
+ ty = r[3]
86
+
87
+ Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
88
+ T = inv(Tinv)
89
+ T[:, 2] = np.array([0, 0, 1])
90
+
91
+ return T, Tinv
92
+
93
+
94
+ def findSimilarity(uv, xy, options=None):
95
+ options = {'K': 2}
96
+
97
+ # uv = np.array(uv)
98
+ # xy = np.array(xy)
99
+
100
+ # Solve for trans1
101
+ trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
102
+
103
+ # Solve for trans2
104
+
105
+ # manually reflect the xy data across the Y-axis
106
+ xyR = xy
107
+ xyR[:, 0] = -1 * xyR[:, 0]
108
+
109
+ trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
110
+
111
+ # manually reflect the tform to undo the reflection done on xyR
112
+ TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
113
+
114
+ trans2 = np.dot(trans2r, TreflectY)
115
+
116
+ # Figure out if trans1 or trans2 is better
117
+ xy1 = tformfwd(trans1, uv)
118
+ norm1 = norm(xy1 - xy)
119
+
120
+ xy2 = tformfwd(trans2, uv)
121
+ norm2 = norm(xy2 - xy)
122
+
123
+ if norm1 <= norm2:
124
+ return trans1, trans1_inv
125
+ else:
126
+ trans2_inv = inv(trans2)
127
+ return trans2, trans2_inv
128
+
129
+
130
+ def get_similarity_transform(src_pts, dst_pts, reflective=True):
131
+ """
132
+ Function:
133
+ ----------
134
+ Find Similarity Transform Matrix 'trans':
135
+ u = src_pts[:, 0]
136
+ v = src_pts[:, 1]
137
+ x = dst_pts[:, 0]
138
+ y = dst_pts[:, 1]
139
+ [x, y, 1] = [u, v, 1] * trans
140
+
141
+ Parameters:
142
+ ----------
143
+ @src_pts: Kx2 np.array
144
+ source points, each row is a pair of coordinates (x, y)
145
+ @dst_pts: Kx2 np.array
146
+ destination points, each row is a pair of transformed
147
+ coordinates (x, y)
148
+ @reflective: True or False
149
+ if True:
150
+ use reflective similarity transform
151
+ else:
152
+ use non-reflective similarity transform
153
+
154
+ Returns:
155
+ ----------
156
+ @trans: 3x3 np.array
157
+ transform matrix from uv to xy
158
+ trans_inv: 3x3 np.array
159
+ inverse of trans, transform matrix from xy to uv
160
+ """
161
+
162
+ if reflective:
163
+ trans, trans_inv = findSimilarity(src_pts, dst_pts)
164
+ else:
165
+ trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
166
+
167
+ return trans, trans_inv
168
+
169
+
170
+ def cvt_tform_mat_for_cv2(trans):
171
+ """
172
+ Function:
173
+ ----------
174
+ Convert Transform Matrix 'trans' into 'cv2_trans' which could be
175
+ directly used by cv2.warpAffine():
176
+ u = src_pts[:, 0]
177
+ v = src_pts[:, 1]
178
+ x = dst_pts[:, 0]
179
+ y = dst_pts[:, 1]
180
+ [x, y].T = cv_trans * [u, v, 1].T
181
+
182
+ Parameters:
183
+ ----------
184
+ @trans: 3x3 np.array
185
+ transform matrix from uv to xy
186
+
187
+ Returns:
188
+ ----------
189
+ @cv2_trans: 2x3 np.array
190
+ transform matrix from src_pts to dst_pts, could be directly used
191
+ for cv2.warpAffine()
192
+ """
193
+ cv2_trans = trans[:, 0:2].T
194
+
195
+ return cv2_trans
196
+
197
+
198
+ def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
199
+ """
200
+ Function:
201
+ ----------
202
+ Find Similarity Transform Matrix 'cv2_trans' which could be
203
+ directly used by cv2.warpAffine():
204
+ u = src_pts[:, 0]
205
+ v = src_pts[:, 1]
206
+ x = dst_pts[:, 0]
207
+ y = dst_pts[:, 1]
208
+ [x, y].T = cv_trans * [u, v, 1].T
209
+
210
+ Parameters:
211
+ ----------
212
+ @src_pts: Kx2 np.array
213
+ source points, each row is a pair of coordinates (x, y)
214
+ @dst_pts: Kx2 np.array
215
+ destination points, each row is a pair of transformed
216
+ coordinates (x, y)
217
+ reflective: True or False
218
+ if True:
219
+ use reflective similarity transform
220
+ else:
221
+ use non-reflective similarity transform
222
+
223
+ Returns:
224
+ ----------
225
+ @cv2_trans: 2x3 np.array
226
+ transform matrix from src_pts to dst_pts, could be directly used
227
+ for cv2.warpAffine()
228
+ """
229
+ trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
230
+ cv2_trans = cvt_tform_mat_for_cv2(trans)
231
+
232
+ return cv2_trans
233
+
234
+
235
+ if __name__ == '__main__':
236
+ """
237
+ u = [0, 6, -2]
238
+ v = [0, 3, 5]
239
+ x = [-1, 0, 4]
240
+ y = [-1, -10, 4]
241
+
242
+ # In Matlab, run:
243
+ #
244
+ # uv = [u'; v'];
245
+ # xy = [x'; y'];
246
+ # tform_sim=cp2tform(uv,xy,'similarity');
247
+ #
248
+ # trans = tform_sim.tdata.T
249
+ # ans =
250
+ # -0.0764 -1.6190 0
251
+ # 1.6190 -0.0764 0
252
+ # -3.2156 0.0290 1.0000
253
+ # trans_inv = tform_sim.tdata.Tinv
254
+ # ans =
255
+ #
256
+ # -0.0291 0.6163 0
257
+ # -0.6163 -0.0291 0
258
+ # -0.0756 1.9826 1.0000
259
+ # xy_m=tformfwd(tform_sim, u,v)
260
+ #
261
+ # xy_m =
262
+ #
263
+ # -3.2156 0.0290
264
+ # 1.1833 -9.9143
265
+ # 5.0323 2.8853
266
+ # uv_m=tforminv(tform_sim, x,y)
267
+ #
268
+ # uv_m =
269
+ #
270
+ # 0.5698 1.3953
271
+ # 6.0872 2.2733
272
+ # -2.6570 4.3314
273
+ """
274
+ u = [0, 6, -2]
275
+ v = [0, 3, 5]
276
+ x = [-1, 0, 4]
277
+ y = [-1, -10, 4]
278
+
279
+ uv = np.array((u, v)).T
280
+ xy = np.array((x, y)).T
281
+
282
+ print('\n--->uv:')
283
+ print(uv)
284
+ print('\n--->xy:')
285
+ print(xy)
286
+
287
+ trans, trans_inv = get_similarity_transform(uv, xy)
288
+
289
+ print('\n--->trans matrix:')
290
+ print(trans)
291
+
292
+ print('\n--->trans_inv matrix:')
293
+ print(trans_inv)
294
+
295
+ print('\n---> apply transform to uv')
296
+ print('\nxy_m = uv_augmented * trans')
297
+ uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
298
+ xy_m = np.dot(uv_aug, trans)
299
+ print(xy_m)
300
+
301
+ print('\nxy_m = tformfwd(trans, uv)')
302
+ xy_m = tformfwd(trans, uv)
303
+ print(xy_m)
304
+
305
+ print('\n---> apply inverse transform to xy')
306
+ print('\nuv_m = xy_augmented * trans_inv')
307
+ xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
308
+ uv_m = np.dot(xy_aug, trans_inv)
309
+ print(uv_m)
310
+
311
+ print('\nuv_m = tformfwd(trans_inv, xy)')
312
+ uv_m = tformfwd(trans_inv, xy)
313
+ print(uv_m)
314
+
315
+ uv_m = tforminv(trans, xy)
316
+ print('\nuv_m = tforminv(trans, xy)')
317
+ print(uv_m)
extras/facexlib/detection/retinaface.py ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import torch
4
+ import torch.nn as nn
5
+ import torch.nn.functional as F
6
+ from PIL import Image
7
+ from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
8
+
9
+ from extras.facexlib.detection.align_trans import get_reference_facial_points, warp_and_crop_face
10
+ from extras.facexlib.detection.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head
11
+ from extras.facexlib.detection.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm,
12
+ py_cpu_nms)
13
+
14
+
15
+ def generate_config(network_name):
16
+
17
+ cfg_mnet = {
18
+ 'name': 'mobilenet0.25',
19
+ 'min_sizes': [[16, 32], [64, 128], [256, 512]],
20
+ 'steps': [8, 16, 32],
21
+ 'variance': [0.1, 0.2],
22
+ 'clip': False,
23
+ 'loc_weight': 2.0,
24
+ 'gpu_train': True,
25
+ 'batch_size': 32,
26
+ 'ngpu': 1,
27
+ 'epoch': 250,
28
+ 'decay1': 190,
29
+ 'decay2': 220,
30
+ 'image_size': 640,
31
+ 'return_layers': {
32
+ 'stage1': 1,
33
+ 'stage2': 2,
34
+ 'stage3': 3
35
+ },
36
+ 'in_channel': 32,
37
+ 'out_channel': 64
38
+ }
39
+
40
+ cfg_re50 = {
41
+ 'name': 'Resnet50',
42
+ 'min_sizes': [[16, 32], [64, 128], [256, 512]],
43
+ 'steps': [8, 16, 32],
44
+ 'variance': [0.1, 0.2],
45
+ 'clip': False,
46
+ 'loc_weight': 2.0,
47
+ 'gpu_train': True,
48
+ 'batch_size': 24,
49
+ 'ngpu': 4,
50
+ 'epoch': 100,
51
+ 'decay1': 70,
52
+ 'decay2': 90,
53
+ 'image_size': 840,
54
+ 'return_layers': {
55
+ 'layer2': 1,
56
+ 'layer3': 2,
57
+ 'layer4': 3
58
+ },
59
+ 'in_channel': 256,
60
+ 'out_channel': 256
61
+ }
62
+
63
+ if network_name == 'mobile0.25':
64
+ return cfg_mnet
65
+ elif network_name == 'resnet50':
66
+ return cfg_re50
67
+ else:
68
+ raise NotImplementedError(f'network_name={network_name}')
69
+
70
+
71
+ class RetinaFace(nn.Module):
72
+
73
+ def __init__(self, network_name='resnet50', half=False, phase='test', device=None):
74
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
75
+
76
+ super(RetinaFace, self).__init__()
77
+ self.half_inference = half
78
+ cfg = generate_config(network_name)
79
+ self.backbone = cfg['name']
80
+
81
+ self.model_name = f'retinaface_{network_name}'
82
+ self.cfg = cfg
83
+ self.phase = phase
84
+ self.target_size, self.max_size = 1600, 2150
85
+ self.resize, self.scale, self.scale1 = 1., None, None
86
+ self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]], device=self.device)
87
+ self.reference = get_reference_facial_points(default_square=True)
88
+ # Build network.
89
+ backbone = None
90
+ if cfg['name'] == 'mobilenet0.25':
91
+ backbone = MobileNetV1()
92
+ self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
93
+ elif cfg['name'] == 'Resnet50':
94
+ import torchvision.models as models
95
+ backbone = models.resnet50(weights=None)
96
+ self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
97
+
98
+ in_channels_stage2 = cfg['in_channel']
99
+ in_channels_list = [
100
+ in_channels_stage2 * 2,
101
+ in_channels_stage2 * 4,
102
+ in_channels_stage2 * 8,
103
+ ]
104
+
105
+ out_channels = cfg['out_channel']
106
+ self.fpn = FPN(in_channels_list, out_channels)
107
+ self.ssh1 = SSH(out_channels, out_channels)
108
+ self.ssh2 = SSH(out_channels, out_channels)
109
+ self.ssh3 = SSH(out_channels, out_channels)
110
+
111
+ self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
112
+ self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
113
+ self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
114
+
115
+ self.to(self.device)
116
+ self.eval()
117
+ if self.half_inference:
118
+ self.half()
119
+
120
+ def forward(self, inputs):
121
+ out = self.body(inputs)
122
+
123
+ if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50':
124
+ out = list(out.values())
125
+ # FPN
126
+ fpn = self.fpn(out)
127
+
128
+ # SSH
129
+ feature1 = self.ssh1(fpn[0])
130
+ feature2 = self.ssh2(fpn[1])
131
+ feature3 = self.ssh3(fpn[2])
132
+ features = [feature1, feature2, feature3]
133
+
134
+ bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
135
+ classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
136
+ tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
137
+ ldm_regressions = (torch.cat(tmp, dim=1))
138
+
139
+ if self.phase == 'train':
140
+ output = (bbox_regressions, classifications, ldm_regressions)
141
+ else:
142
+ output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
143
+ return output
144
+
145
+ def __detect_faces(self, inputs):
146
+ # get scale
147
+ height, width = inputs.shape[2:]
148
+ self.scale = torch.tensor([width, height, width, height], dtype=torch.float32, device=self.device)
149
+ tmp = [width, height, width, height, width, height, width, height, width, height]
150
+ self.scale1 = torch.tensor(tmp, dtype=torch.float32, device=self.device)
151
+
152
+ # forawrd
153
+ inputs = inputs.to(self.device)
154
+ if self.half_inference:
155
+ inputs = inputs.half()
156
+ loc, conf, landmarks = self(inputs)
157
+
158
+ # get priorbox
159
+ priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
160
+ priors = priorbox.forward().to(self.device)
161
+
162
+ return loc, conf, landmarks, priors
163
+
164
+ # single image detection
165
+ def transform(self, image, use_origin_size):
166
+ # convert to opencv format
167
+ if isinstance(image, Image.Image):
168
+ image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
169
+ image = image.astype(np.float32)
170
+
171
+ # testing scale
172
+ im_size_min = np.min(image.shape[0:2])
173
+ im_size_max = np.max(image.shape[0:2])
174
+ resize = float(self.target_size) / float(im_size_min)
175
+
176
+ # prevent bigger axis from being more than max_size
177
+ if np.round(resize * im_size_max) > self.max_size:
178
+ resize = float(self.max_size) / float(im_size_max)
179
+ resize = 1 if use_origin_size else resize
180
+
181
+ # resize
182
+ if resize != 1:
183
+ image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
184
+
185
+ # convert to torch.tensor format
186
+ # image -= (104, 117, 123)
187
+ image = image.transpose(2, 0, 1)
188
+ image = torch.from_numpy(image).unsqueeze(0)
189
+
190
+ return image, resize
191
+
192
+ def detect_faces(
193
+ self,
194
+ image,
195
+ conf_threshold=0.8,
196
+ nms_threshold=0.4,
197
+ use_origin_size=True,
198
+ ):
199
+ image, self.resize = self.transform(image, use_origin_size)
200
+ image = image.to(self.device)
201
+ if self.half_inference:
202
+ image = image.half()
203
+ image = image - self.mean_tensor
204
+
205
+ loc, conf, landmarks, priors = self.__detect_faces(image)
206
+
207
+ boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance'])
208
+ boxes = boxes * self.scale / self.resize
209
+ boxes = boxes.cpu().numpy()
210
+
211
+ scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
212
+
213
+ landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance'])
214
+ landmarks = landmarks * self.scale1 / self.resize
215
+ landmarks = landmarks.cpu().numpy()
216
+
217
+ # ignore low scores
218
+ inds = np.where(scores > conf_threshold)[0]
219
+ boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
220
+
221
+ # sort
222
+ order = scores.argsort()[::-1]
223
+ boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
224
+
225
+ # do NMS
226
+ bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
227
+ keep = py_cpu_nms(bounding_boxes, nms_threshold)
228
+ bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
229
+ # self.t['forward_pass'].toc()
230
+ # print(self.t['forward_pass'].average_time)
231
+ # import sys
232
+ # sys.stdout.flush()
233
+ return np.concatenate((bounding_boxes, landmarks), axis=1)
234
+
235
+ def __align_multi(self, image, boxes, landmarks, limit=None):
236
+
237
+ if len(boxes) < 1:
238
+ return [], []
239
+
240
+ if limit:
241
+ boxes = boxes[:limit]
242
+ landmarks = landmarks[:limit]
243
+
244
+ faces = []
245
+ for landmark in landmarks:
246
+ facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
247
+
248
+ warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112))
249
+ faces.append(warped_face)
250
+
251
+ return np.concatenate((boxes, landmarks), axis=1), faces
252
+
253
+ def align_multi(self, img, conf_threshold=0.8, limit=None):
254
+
255
+ rlt = self.detect_faces(img, conf_threshold=conf_threshold)
256
+ boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
257
+
258
+ return self.__align_multi(img, boxes, landmarks, limit)
259
+
260
+ # batched detection
261
+ def batched_transform(self, frames, use_origin_size):
262
+ """
263
+ Arguments:
264
+ frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
265
+ type=np.float32, BGR format).
266
+ use_origin_size: whether to use origin size.
267
+ """
268
+ from_PIL = True if isinstance(frames[0], Image.Image) else False
269
+
270
+ # convert to opencv format
271
+ if from_PIL:
272
+ frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames]
273
+ frames = np.asarray(frames, dtype=np.float32)
274
+
275
+ # testing scale
276
+ im_size_min = np.min(frames[0].shape[0:2])
277
+ im_size_max = np.max(frames[0].shape[0:2])
278
+ resize = float(self.target_size) / float(im_size_min)
279
+
280
+ # prevent bigger axis from being more than max_size
281
+ if np.round(resize * im_size_max) > self.max_size:
282
+ resize = float(self.max_size) / float(im_size_max)
283
+ resize = 1 if use_origin_size else resize
284
+
285
+ # resize
286
+ if resize != 1:
287
+ if not from_PIL:
288
+ frames = F.interpolate(frames, scale_factor=resize)
289
+ else:
290
+ frames = [
291
+ cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
292
+ for frame in frames
293
+ ]
294
+
295
+ # convert to torch.tensor format
296
+ if not from_PIL:
297
+ frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
298
+ else:
299
+ frames = frames.transpose((0, 3, 1, 2))
300
+ frames = torch.from_numpy(frames)
301
+
302
+ return frames, resize
303
+
304
+ def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True):
305
+ """
306
+ Arguments:
307
+ frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
308
+ type=np.uint8, BGR format).
309
+ conf_threshold: confidence threshold.
310
+ nms_threshold: nms threshold.
311
+ use_origin_size: whether to use origin size.
312
+ Returns:
313
+ final_bounding_boxes: list of np.array ([n_boxes, 5],
314
+ type=np.float32).
315
+ final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
316
+ """
317
+ # self.t['forward_pass'].tic()
318
+ frames, self.resize = self.batched_transform(frames, use_origin_size)
319
+ frames = frames.to(self.device)
320
+ frames = frames - self.mean_tensor
321
+
322
+ b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
323
+
324
+ final_bounding_boxes, final_landmarks = [], []
325
+
326
+ # decode
327
+ priors = priors.unsqueeze(0)
328
+ b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize
329
+ b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize
330
+ b_conf = b_conf[:, :, 1]
331
+
332
+ # index for selection
333
+ b_indice = b_conf > conf_threshold
334
+
335
+ # concat
336
+ b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
337
+
338
+ for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
339
+
340
+ # ignore low scores
341
+ pred, landm = pred[inds, :], landm[inds, :]
342
+ if pred.shape[0] == 0:
343
+ final_bounding_boxes.append(np.array([], dtype=np.float32))
344
+ final_landmarks.append(np.array([], dtype=np.float32))
345
+ continue
346
+
347
+ # sort
348
+ # order = score.argsort(descending=True)
349
+ # box, landm, score = box[order], landm[order], score[order]
350
+
351
+ # to CPU
352
+ bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
353
+
354
+ # NMS
355
+ keep = py_cpu_nms(bounding_boxes, nms_threshold)
356
+ bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
357
+
358
+ # append
359
+ final_bounding_boxes.append(bounding_boxes)
360
+ final_landmarks.append(landmarks)
361
+ # self.t['forward_pass'].toc(average=True)
362
+ # self.batch_time += self.t['forward_pass'].diff
363
+ # self.total_frame += len(frames)
364
+ # print(self.batch_time / self.total_frame)
365
+
366
+ return final_bounding_boxes, final_landmarks
extras/facexlib/detection/retinaface_net.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ def conv_bn(inp, oup, stride=1, leaky=0):
7
+ return nn.Sequential(
8
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup),
9
+ nn.LeakyReLU(negative_slope=leaky, inplace=True))
10
+
11
+
12
+ def conv_bn_no_relu(inp, oup, stride):
13
+ return nn.Sequential(
14
+ nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
15
+ nn.BatchNorm2d(oup),
16
+ )
17
+
18
+
19
+ def conv_bn1X1(inp, oup, stride, leaky=0):
20
+ return nn.Sequential(
21
+ nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup),
22
+ nn.LeakyReLU(negative_slope=leaky, inplace=True))
23
+
24
+
25
+ def conv_dw(inp, oup, stride, leaky=0.1):
26
+ return nn.Sequential(
27
+ nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
28
+ nn.BatchNorm2d(inp),
29
+ nn.LeakyReLU(negative_slope=leaky, inplace=True),
30
+ nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
31
+ nn.BatchNorm2d(oup),
32
+ nn.LeakyReLU(negative_slope=leaky, inplace=True),
33
+ )
34
+
35
+
36
+ class SSH(nn.Module):
37
+
38
+ def __init__(self, in_channel, out_channel):
39
+ super(SSH, self).__init__()
40
+ assert out_channel % 4 == 0
41
+ leaky = 0
42
+ if (out_channel <= 64):
43
+ leaky = 0.1
44
+ self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)
45
+
46
+ self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
47
+ self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
48
+
49
+ self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky)
50
+ self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
51
+
52
+ def forward(self, input):
53
+ conv3X3 = self.conv3X3(input)
54
+
55
+ conv5X5_1 = self.conv5X5_1(input)
56
+ conv5X5 = self.conv5X5_2(conv5X5_1)
57
+
58
+ conv7X7_2 = self.conv7X7_2(conv5X5_1)
59
+ conv7X7 = self.conv7x7_3(conv7X7_2)
60
+
61
+ out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
62
+ out = F.relu(out)
63
+ return out
64
+
65
+
66
+ class FPN(nn.Module):
67
+
68
+ def __init__(self, in_channels_list, out_channels):
69
+ super(FPN, self).__init__()
70
+ leaky = 0
71
+ if (out_channels <= 64):
72
+ leaky = 0.1
73
+ self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky)
74
+ self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky)
75
+ self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky)
76
+
77
+ self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
78
+ self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)
79
+
80
+ def forward(self, input):
81
+ # names = list(input.keys())
82
+ # input = list(input.values())
83
+
84
+ output1 = self.output1(input[0])
85
+ output2 = self.output2(input[1])
86
+ output3 = self.output3(input[2])
87
+
88
+ up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest')
89
+ output2 = output2 + up3
90
+ output2 = self.merge2(output2)
91
+
92
+ up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest')
93
+ output1 = output1 + up2
94
+ output1 = self.merge1(output1)
95
+
96
+ out = [output1, output2, output3]
97
+ return out
98
+
99
+
100
+ class MobileNetV1(nn.Module):
101
+
102
+ def __init__(self):
103
+ super(MobileNetV1, self).__init__()
104
+ self.stage1 = nn.Sequential(
105
+ conv_bn(3, 8, 2, leaky=0.1), # 3
106
+ conv_dw(8, 16, 1), # 7
107
+ conv_dw(16, 32, 2), # 11
108
+ conv_dw(32, 32, 1), # 19
109
+ conv_dw(32, 64, 2), # 27
110
+ conv_dw(64, 64, 1), # 43
111
+ )
112
+ self.stage2 = nn.Sequential(
113
+ conv_dw(64, 128, 2), # 43 + 16 = 59
114
+ conv_dw(128, 128, 1), # 59 + 32 = 91
115
+ conv_dw(128, 128, 1), # 91 + 32 = 123
116
+ conv_dw(128, 128, 1), # 123 + 32 = 155
117
+ conv_dw(128, 128, 1), # 155 + 32 = 187
118
+ conv_dw(128, 128, 1), # 187 + 32 = 219
119
+ )
120
+ self.stage3 = nn.Sequential(
121
+ conv_dw(128, 256, 2), # 219 +3 2 = 241
122
+ conv_dw(256, 256, 1), # 241 + 64 = 301
123
+ )
124
+ self.avg = nn.AdaptiveAvgPool2d((1, 1))
125
+ self.fc = nn.Linear(256, 1000)
126
+
127
+ def forward(self, x):
128
+ x = self.stage1(x)
129
+ x = self.stage2(x)
130
+ x = self.stage3(x)
131
+ x = self.avg(x)
132
+ # x = self.model(x)
133
+ x = x.view(-1, 256)
134
+ x = self.fc(x)
135
+ return x
136
+
137
+
138
+ class ClassHead(nn.Module):
139
+
140
+ def __init__(self, inchannels=512, num_anchors=3):
141
+ super(ClassHead, self).__init__()
142
+ self.num_anchors = num_anchors
143
+ self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0)
144
+
145
+ def forward(self, x):
146
+ out = self.conv1x1(x)
147
+ out = out.permute(0, 2, 3, 1).contiguous()
148
+
149
+ return out.view(out.shape[0], -1, 2)
150
+
151
+
152
+ class BboxHead(nn.Module):
153
+
154
+ def __init__(self, inchannels=512, num_anchors=3):
155
+ super(BboxHead, self).__init__()
156
+ self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0)
157
+
158
+ def forward(self, x):
159
+ out = self.conv1x1(x)
160
+ out = out.permute(0, 2, 3, 1).contiguous()
161
+
162
+ return out.view(out.shape[0], -1, 4)
163
+
164
+
165
+ class LandmarkHead(nn.Module):
166
+
167
+ def __init__(self, inchannels=512, num_anchors=3):
168
+ super(LandmarkHead, self).__init__()
169
+ self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0)
170
+
171
+ def forward(self, x):
172
+ out = self.conv1x1(x)
173
+ out = out.permute(0, 2, 3, 1).contiguous()
174
+
175
+ return out.view(out.shape[0], -1, 10)
176
+
177
+
178
+ def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
179
+ classhead = nn.ModuleList()
180
+ for i in range(fpn_num):
181
+ classhead.append(ClassHead(inchannels, anchor_num))
182
+ return classhead
183
+
184
+
185
+ def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
186
+ bboxhead = nn.ModuleList()
187
+ for i in range(fpn_num):
188
+ bboxhead.append(BboxHead(inchannels, anchor_num))
189
+ return bboxhead
190
+
191
+
192
+ def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
193
+ landmarkhead = nn.ModuleList()
194
+ for i in range(fpn_num):
195
+ landmarkhead.append(LandmarkHead(inchannels, anchor_num))
196
+ return landmarkhead
extras/facexlib/detection/retinaface_utils.py ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torchvision
4
+ from itertools import product as product
5
+ from math import ceil
6
+
7
+
8
+ class PriorBox(object):
9
+
10
+ def __init__(self, cfg, image_size=None, phase='train'):
11
+ super(PriorBox, self).__init__()
12
+ self.min_sizes = cfg['min_sizes']
13
+ self.steps = cfg['steps']
14
+ self.clip = cfg['clip']
15
+ self.image_size = image_size
16
+ self.feature_maps = [[ceil(self.image_size[0] / step), ceil(self.image_size[1] / step)] for step in self.steps]
17
+ self.name = 's'
18
+
19
+ def forward(self):
20
+ anchors = []
21
+ for k, f in enumerate(self.feature_maps):
22
+ min_sizes = self.min_sizes[k]
23
+ for i, j in product(range(f[0]), range(f[1])):
24
+ for min_size in min_sizes:
25
+ s_kx = min_size / self.image_size[1]
26
+ s_ky = min_size / self.image_size[0]
27
+ dense_cx = [x * self.steps[k] / self.image_size[1] for x in [j + 0.5]]
28
+ dense_cy = [y * self.steps[k] / self.image_size[0] for y in [i + 0.5]]
29
+ for cy, cx in product(dense_cy, dense_cx):
30
+ anchors += [cx, cy, s_kx, s_ky]
31
+
32
+ # back to torch land
33
+ output = torch.Tensor(anchors).view(-1, 4)
34
+ if self.clip:
35
+ output.clamp_(max=1, min=0)
36
+ return output
37
+
38
+
39
+ def py_cpu_nms(dets, thresh):
40
+ """Pure Python NMS baseline."""
41
+ keep = torchvision.ops.nms(
42
+ boxes=torch.Tensor(dets[:, :4]),
43
+ scores=torch.Tensor(dets[:, 4]),
44
+ iou_threshold=thresh,
45
+ )
46
+
47
+ return list(keep)
48
+
49
+
50
+ def point_form(boxes):
51
+ """ Convert prior_boxes to (xmin, ymin, xmax, ymax)
52
+ representation for comparison to point form ground truth data.
53
+ Args:
54
+ boxes: (tensor) center-size default boxes from priorbox layers.
55
+ Return:
56
+ boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
57
+ """
58
+ return torch.cat(
59
+ (
60
+ boxes[:, :2] - boxes[:, 2:] / 2, # xmin, ymin
61
+ boxes[:, :2] + boxes[:, 2:] / 2),
62
+ 1) # xmax, ymax
63
+
64
+
65
+ def center_size(boxes):
66
+ """ Convert prior_boxes to (cx, cy, w, h)
67
+ representation for comparison to center-size form ground truth data.
68
+ Args:
69
+ boxes: (tensor) point_form boxes
70
+ Return:
71
+ boxes: (tensor) Converted xmin, ymin, xmax, ymax form of boxes.
72
+ """
73
+ return torch.cat(
74
+ (boxes[:, 2:] + boxes[:, :2]) / 2, # cx, cy
75
+ boxes[:, 2:] - boxes[:, :2],
76
+ 1) # w, h
77
+
78
+
79
+ def intersect(box_a, box_b):
80
+ """ We resize both tensors to [A,B,2] without new malloc:
81
+ [A,2] -> [A,1,2] -> [A,B,2]
82
+ [B,2] -> [1,B,2] -> [A,B,2]
83
+ Then we compute the area of intersect between box_a and box_b.
84
+ Args:
85
+ box_a: (tensor) bounding boxes, Shape: [A,4].
86
+ box_b: (tensor) bounding boxes, Shape: [B,4].
87
+ Return:
88
+ (tensor) intersection area, Shape: [A,B].
89
+ """
90
+ A = box_a.size(0)
91
+ B = box_b.size(0)
92
+ max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2), box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
93
+ min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2), box_b[:, :2].unsqueeze(0).expand(A, B, 2))
94
+ inter = torch.clamp((max_xy - min_xy), min=0)
95
+ return inter[:, :, 0] * inter[:, :, 1]
96
+
97
+
98
+ def jaccard(box_a, box_b):
99
+ """Compute the jaccard overlap of two sets of boxes. The jaccard overlap
100
+ is simply the intersection over union of two boxes. Here we operate on
101
+ ground truth boxes and default boxes.
102
+ E.g.:
103
+ A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B)
104
+ Args:
105
+ box_a: (tensor) Ground truth bounding boxes, Shape: [num_objects,4]
106
+ box_b: (tensor) Prior boxes from priorbox layers, Shape: [num_priors,4]
107
+ Return:
108
+ jaccard overlap: (tensor) Shape: [box_a.size(0), box_b.size(0)]
109
+ """
110
+ inter = intersect(box_a, box_b)
111
+ area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])).unsqueeze(1).expand_as(inter) # [A,B]
112
+ area_b = ((box_b[:, 2] - box_b[:, 0]) * (box_b[:, 3] - box_b[:, 1])).unsqueeze(0).expand_as(inter) # [A,B]
113
+ union = area_a + area_b - inter
114
+ return inter / union # [A,B]
115
+
116
+
117
+ def matrix_iou(a, b):
118
+ """
119
+ return iou of a and b, numpy version for data augenmentation
120
+ """
121
+ lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
122
+ rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
123
+
124
+ area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
125
+ area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
126
+ area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
127
+ return area_i / (area_a[:, np.newaxis] + area_b - area_i)
128
+
129
+
130
+ def matrix_iof(a, b):
131
+ """
132
+ return iof of a and b, numpy version for data augenmentation
133
+ """
134
+ lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
135
+ rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
136
+
137
+ area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
138
+ area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
139
+ return area_i / np.maximum(area_a[:, np.newaxis], 1)
140
+
141
+
142
+ def match(threshold, truths, priors, variances, labels, landms, loc_t, conf_t, landm_t, idx):
143
+ """Match each prior box with the ground truth box of the highest jaccard
144
+ overlap, encode the bounding boxes, then return the matched indices
145
+ corresponding to both confidence and location preds.
146
+ Args:
147
+ threshold: (float) The overlap threshold used when matching boxes.
148
+ truths: (tensor) Ground truth boxes, Shape: [num_obj, 4].
149
+ priors: (tensor) Prior boxes from priorbox layers, Shape: [n_priors,4].
150
+ variances: (tensor) Variances corresponding to each prior coord,
151
+ Shape: [num_priors, 4].
152
+ labels: (tensor) All the class labels for the image, Shape: [num_obj].
153
+ landms: (tensor) Ground truth landms, Shape [num_obj, 10].
154
+ loc_t: (tensor) Tensor to be filled w/ encoded location targets.
155
+ conf_t: (tensor) Tensor to be filled w/ matched indices for conf preds.
156
+ landm_t: (tensor) Tensor to be filled w/ encoded landm targets.
157
+ idx: (int) current batch index
158
+ Return:
159
+ The matched indices corresponding to 1)location 2)confidence
160
+ 3)landm preds.
161
+ """
162
+ # jaccard index
163
+ overlaps = jaccard(truths, point_form(priors))
164
+ # (Bipartite Matching)
165
+ # [1,num_objects] best prior for each ground truth
166
+ best_prior_overlap, best_prior_idx = overlaps.max(1, keepdim=True)
167
+
168
+ # ignore hard gt
169
+ valid_gt_idx = best_prior_overlap[:, 0] >= 0.2
170
+ best_prior_idx_filter = best_prior_idx[valid_gt_idx, :]
171
+ if best_prior_idx_filter.shape[0] <= 0:
172
+ loc_t[idx] = 0
173
+ conf_t[idx] = 0
174
+ return
175
+
176
+ # [1,num_priors] best ground truth for each prior
177
+ best_truth_overlap, best_truth_idx = overlaps.max(0, keepdim=True)
178
+ best_truth_idx.squeeze_(0)
179
+ best_truth_overlap.squeeze_(0)
180
+ best_prior_idx.squeeze_(1)
181
+ best_prior_idx_filter.squeeze_(1)
182
+ best_prior_overlap.squeeze_(1)
183
+ best_truth_overlap.index_fill_(0, best_prior_idx_filter, 2) # ensure best prior
184
+ # TODO refactor: index best_prior_idx with long tensor
185
+ # ensure every gt matches with its prior of max overlap
186
+ for j in range(best_prior_idx.size(0)): # 判别此anchor是预测哪一个boxes
187
+ best_truth_idx[best_prior_idx[j]] = j
188
+ matches = truths[best_truth_idx] # Shape: [num_priors,4] 此处为每一个anchor对应的bbox取出来
189
+ conf = labels[best_truth_idx] # Shape: [num_priors] 此处为每一个anchor对应的label取出来
190
+ conf[best_truth_overlap < threshold] = 0 # label as background overlap<0.35的全部作为负样本
191
+ loc = encode(matches, priors, variances)
192
+
193
+ matches_landm = landms[best_truth_idx]
194
+ landm = encode_landm(matches_landm, priors, variances)
195
+ loc_t[idx] = loc # [num_priors,4] encoded offsets to learn
196
+ conf_t[idx] = conf # [num_priors] top class label for each prior
197
+ landm_t[idx] = landm
198
+
199
+
200
+ def encode(matched, priors, variances):
201
+ """Encode the variances from the priorbox layers into the ground truth boxes
202
+ we have matched (based on jaccard overlap) with the prior boxes.
203
+ Args:
204
+ matched: (tensor) Coords of ground truth for each prior in point-form
205
+ Shape: [num_priors, 4].
206
+ priors: (tensor) Prior boxes in center-offset form
207
+ Shape: [num_priors,4].
208
+ variances: (list[float]) Variances of priorboxes
209
+ Return:
210
+ encoded boxes (tensor), Shape: [num_priors, 4]
211
+ """
212
+
213
+ # dist b/t match center and prior's center
214
+ g_cxcy = (matched[:, :2] + matched[:, 2:]) / 2 - priors[:, :2]
215
+ # encode variance
216
+ g_cxcy /= (variances[0] * priors[:, 2:])
217
+ # match wh / prior wh
218
+ g_wh = (matched[:, 2:] - matched[:, :2]) / priors[:, 2:]
219
+ g_wh = torch.log(g_wh) / variances[1]
220
+ # return target for smooth_l1_loss
221
+ return torch.cat([g_cxcy, g_wh], 1) # [num_priors,4]
222
+
223
+
224
+ def encode_landm(matched, priors, variances):
225
+ """Encode the variances from the priorbox layers into the ground truth boxes
226
+ we have matched (based on jaccard overlap) with the prior boxes.
227
+ Args:
228
+ matched: (tensor) Coords of ground truth for each prior in point-form
229
+ Shape: [num_priors, 10].
230
+ priors: (tensor) Prior boxes in center-offset form
231
+ Shape: [num_priors,4].
232
+ variances: (list[float]) Variances of priorboxes
233
+ Return:
234
+ encoded landm (tensor), Shape: [num_priors, 10]
235
+ """
236
+
237
+ # dist b/t match center and prior's center
238
+ matched = torch.reshape(matched, (matched.size(0), 5, 2))
239
+ priors_cx = priors[:, 0].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
240
+ priors_cy = priors[:, 1].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
241
+ priors_w = priors[:, 2].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
242
+ priors_h = priors[:, 3].unsqueeze(1).expand(matched.size(0), 5).unsqueeze(2)
243
+ priors = torch.cat([priors_cx, priors_cy, priors_w, priors_h], dim=2)
244
+ g_cxcy = matched[:, :, :2] - priors[:, :, :2]
245
+ # encode variance
246
+ g_cxcy /= (variances[0] * priors[:, :, 2:])
247
+ # g_cxcy /= priors[:, :, 2:]
248
+ g_cxcy = g_cxcy.reshape(g_cxcy.size(0), -1)
249
+ # return target for smooth_l1_loss
250
+ return g_cxcy
251
+
252
+
253
+ # Adapted from https://github.com/Hakuyume/chainer-ssd
254
+ def decode(loc, priors, variances):
255
+ """Decode locations from predictions using priors to undo
256
+ the encoding we did for offset regression at train time.
257
+ Args:
258
+ loc (tensor): location predictions for loc layers,
259
+ Shape: [num_priors,4]
260
+ priors (tensor): Prior boxes in center-offset form.
261
+ Shape: [num_priors,4].
262
+ variances: (list[float]) Variances of priorboxes
263
+ Return:
264
+ decoded bounding box predictions
265
+ """
266
+
267
+ boxes = torch.cat((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
268
+ priors[:, 2:] * torch.exp(loc[:, 2:] * variances[1])), 1)
269
+ boxes[:, :2] -= boxes[:, 2:] / 2
270
+ boxes[:, 2:] += boxes[:, :2]
271
+ return boxes
272
+
273
+
274
+ def decode_landm(pre, priors, variances):
275
+ """Decode landm from predictions using priors to undo
276
+ the encoding we did for offset regression at train time.
277
+ Args:
278
+ pre (tensor): landm predictions for loc layers,
279
+ Shape: [num_priors,10]
280
+ priors (tensor): Prior boxes in center-offset form.
281
+ Shape: [num_priors,4].
282
+ variances: (list[float]) Variances of priorboxes
283
+ Return:
284
+ decoded landm predictions
285
+ """
286
+ tmp = (
287
+ priors[:, :2] + pre[:, :2] * variances[0] * priors[:, 2:],
288
+ priors[:, :2] + pre[:, 2:4] * variances[0] * priors[:, 2:],
289
+ priors[:, :2] + pre[:, 4:6] * variances[0] * priors[:, 2:],
290
+ priors[:, :2] + pre[:, 6:8] * variances[0] * priors[:, 2:],
291
+ priors[:, :2] + pre[:, 8:10] * variances[0] * priors[:, 2:],
292
+ )
293
+ landms = torch.cat(tmp, dim=1)
294
+ return landms
295
+
296
+
297
+ def batched_decode(b_loc, priors, variances):
298
+ """Decode locations from predictions using priors to undo
299
+ the encoding we did for offset regression at train time.
300
+ Args:
301
+ b_loc (tensor): location predictions for loc layers,
302
+ Shape: [num_batches,num_priors,4]
303
+ priors (tensor): Prior boxes in center-offset form.
304
+ Shape: [1,num_priors,4].
305
+ variances: (list[float]) Variances of priorboxes
306
+ Return:
307
+ decoded bounding box predictions
308
+ """
309
+ boxes = (
310
+ priors[:, :, :2] + b_loc[:, :, :2] * variances[0] * priors[:, :, 2:],
311
+ priors[:, :, 2:] * torch.exp(b_loc[:, :, 2:] * variances[1]),
312
+ )
313
+ boxes = torch.cat(boxes, dim=2)
314
+
315
+ boxes[:, :, :2] -= boxes[:, :, 2:] / 2
316
+ boxes[:, :, 2:] += boxes[:, :, :2]
317
+ return boxes
318
+
319
+
320
+ def batched_decode_landm(pre, priors, variances):
321
+ """Decode landm from predictions using priors to undo
322
+ the encoding we did for offset regression at train time.
323
+ Args:
324
+ pre (tensor): landm predictions for loc layers,
325
+ Shape: [num_batches,num_priors,10]
326
+ priors (tensor): Prior boxes in center-offset form.
327
+ Shape: [1,num_priors,4].
328
+ variances: (list[float]) Variances of priorboxes
329
+ Return:
330
+ decoded landm predictions
331
+ """
332
+ landms = (
333
+ priors[:, :, :2] + pre[:, :, :2] * variances[0] * priors[:, :, 2:],
334
+ priors[:, :, :2] + pre[:, :, 2:4] * variances[0] * priors[:, :, 2:],
335
+ priors[:, :, :2] + pre[:, :, 4:6] * variances[0] * priors[:, :, 2:],
336
+ priors[:, :, :2] + pre[:, :, 6:8] * variances[0] * priors[:, :, 2:],
337
+ priors[:, :, :2] + pre[:, :, 8:10] * variances[0] * priors[:, :, 2:],
338
+ )
339
+ landms = torch.cat(landms, dim=2)
340
+ return landms
341
+
342
+
343
+ def log_sum_exp(x):
344
+ """Utility function for computing log_sum_exp while determining
345
+ This will be used to determine unaveraged confidence loss across
346
+ all examples in a batch.
347
+ Args:
348
+ x (Variable(tensor)): conf_preds from conf layers
349
+ """
350
+ x_max = x.data.max()
351
+ return torch.log(torch.sum(torch.exp(x - x_max), 1, keepdim=True)) + x_max
352
+
353
+
354
+ # Original author: Francisco Massa:
355
+ # https://github.com/fmassa/object-detection.torch
356
+ # Ported to PyTorch by Max deGroot (02/01/2017)
357
+ def nms(boxes, scores, overlap=0.5, top_k=200):
358
+ """Apply non-maximum suppression at test time to avoid detecting too many
359
+ overlapping bounding boxes for a given object.
360
+ Args:
361
+ boxes: (tensor) The location preds for the img, Shape: [num_priors,4].
362
+ scores: (tensor) The class predscores for the img, Shape:[num_priors].
363
+ overlap: (float) The overlap thresh for suppressing unnecessary boxes.
364
+ top_k: (int) The Maximum number of box preds to consider.
365
+ Return:
366
+ The indices of the kept boxes with respect to num_priors.
367
+ """
368
+
369
+ keep = torch.Tensor(scores.size(0)).fill_(0).long()
370
+ if boxes.numel() == 0:
371
+ return keep
372
+ x1 = boxes[:, 0]
373
+ y1 = boxes[:, 1]
374
+ x2 = boxes[:, 2]
375
+ y2 = boxes[:, 3]
376
+ area = torch.mul(x2 - x1, y2 - y1)
377
+ v, idx = scores.sort(0) # sort in ascending order
378
+ # I = I[v >= 0.01]
379
+ idx = idx[-top_k:] # indices of the top-k largest vals
380
+ xx1 = boxes.new()
381
+ yy1 = boxes.new()
382
+ xx2 = boxes.new()
383
+ yy2 = boxes.new()
384
+ w = boxes.new()
385
+ h = boxes.new()
386
+
387
+ # keep = torch.Tensor()
388
+ count = 0
389
+ while idx.numel() > 0:
390
+ i = idx[-1] # index of current largest val
391
+ # keep.append(i)
392
+ keep[count] = i
393
+ count += 1
394
+ if idx.size(0) == 1:
395
+ break
396
+ idx = idx[:-1] # remove kept element from view
397
+ # load bboxes of next highest vals
398
+ torch.index_select(x1, 0, idx, out=xx1)
399
+ torch.index_select(y1, 0, idx, out=yy1)
400
+ torch.index_select(x2, 0, idx, out=xx2)
401
+ torch.index_select(y2, 0, idx, out=yy2)
402
+ # store element-wise max with next highest score
403
+ xx1 = torch.clamp(xx1, min=x1[i])
404
+ yy1 = torch.clamp(yy1, min=y1[i])
405
+ xx2 = torch.clamp(xx2, max=x2[i])
406
+ yy2 = torch.clamp(yy2, max=y2[i])
407
+ w.resize_as_(xx2)
408
+ h.resize_as_(yy2)
409
+ w = xx2 - xx1
410
+ h = yy2 - yy1
411
+ # check sizes of xx1 and xx2.. after each iteration
412
+ w = torch.clamp(w, min=0.0)
413
+ h = torch.clamp(h, min=0.0)
414
+ inter = w * h
415
+ # IoU = i / (area(a) + area(b) - i)
416
+ rem_areas = torch.index_select(area, 0, idx) # load remaining areas)
417
+ union = (rem_areas - inter) + area[i]
418
+ IoU = inter / union # store result in iou
419
+ # keep only elements with an IoU <= overlap
420
+ idx = idx[IoU.le(overlap)]
421
+ return keep, count
extras/facexlib/parsing/__init__.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from extras.facexlib.utils import load_file_from_url
4
+ from .bisenet import BiSeNet
5
+ from .parsenet import ParseNet
6
+
7
+
8
+ def init_parsing_model(model_name='bisenet', half=False, device='cuda', model_rootpath=None):
9
+ if model_name == 'bisenet':
10
+ model = BiSeNet(num_class=19)
11
+ model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.2.0/parsing_bisenet.pth'
12
+ elif model_name == 'parsenet':
13
+ model = ParseNet(in_size=512, out_size=512, parsing_ch=19)
14
+ model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth'
15
+ else:
16
+ raise NotImplementedError(f'{model_name} is not implemented.')
17
+
18
+ model_path = load_file_from_url(
19
+ url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath)
20
+ load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
21
+ model.load_state_dict(load_net, strict=True)
22
+ model.eval()
23
+ model = model.to(device)
24
+ return model
extras/facexlib/parsing/bisenet.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from .resnet import ResNet18
6
+
7
+
8
+ class ConvBNReLU(nn.Module):
9
+
10
+ def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1):
11
+ super(ConvBNReLU, self).__init__()
12
+ self.conv = nn.Conv2d(in_chan, out_chan, kernel_size=ks, stride=stride, padding=padding, bias=False)
13
+ self.bn = nn.BatchNorm2d(out_chan)
14
+
15
+ def forward(self, x):
16
+ x = self.conv(x)
17
+ x = F.relu(self.bn(x))
18
+ return x
19
+
20
+
21
+ class BiSeNetOutput(nn.Module):
22
+
23
+ def __init__(self, in_chan, mid_chan, num_class):
24
+ super(BiSeNetOutput, self).__init__()
25
+ self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
26
+ self.conv_out = nn.Conv2d(mid_chan, num_class, kernel_size=1, bias=False)
27
+
28
+ def forward(self, x):
29
+ feat = self.conv(x)
30
+ out = self.conv_out(feat)
31
+ return out, feat
32
+
33
+
34
+ class AttentionRefinementModule(nn.Module):
35
+
36
+ def __init__(self, in_chan, out_chan):
37
+ super(AttentionRefinementModule, self).__init__()
38
+ self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
39
+ self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size=1, bias=False)
40
+ self.bn_atten = nn.BatchNorm2d(out_chan)
41
+ self.sigmoid_atten = nn.Sigmoid()
42
+
43
+ def forward(self, x):
44
+ feat = self.conv(x)
45
+ atten = F.avg_pool2d(feat, feat.size()[2:])
46
+ atten = self.conv_atten(atten)
47
+ atten = self.bn_atten(atten)
48
+ atten = self.sigmoid_atten(atten)
49
+ out = torch.mul(feat, atten)
50
+ return out
51
+
52
+
53
+ class ContextPath(nn.Module):
54
+
55
+ def __init__(self):
56
+ super(ContextPath, self).__init__()
57
+ self.resnet = ResNet18()
58
+ self.arm16 = AttentionRefinementModule(256, 128)
59
+ self.arm32 = AttentionRefinementModule(512, 128)
60
+ self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
61
+ self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
62
+ self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
63
+
64
+ def forward(self, x):
65
+ feat8, feat16, feat32 = self.resnet(x)
66
+ h8, w8 = feat8.size()[2:]
67
+ h16, w16 = feat16.size()[2:]
68
+ h32, w32 = feat32.size()[2:]
69
+
70
+ avg = F.avg_pool2d(feat32, feat32.size()[2:])
71
+ avg = self.conv_avg(avg)
72
+ avg_up = F.interpolate(avg, (h32, w32), mode='nearest')
73
+
74
+ feat32_arm = self.arm32(feat32)
75
+ feat32_sum = feat32_arm + avg_up
76
+ feat32_up = F.interpolate(feat32_sum, (h16, w16), mode='nearest')
77
+ feat32_up = self.conv_head32(feat32_up)
78
+
79
+ feat16_arm = self.arm16(feat16)
80
+ feat16_sum = feat16_arm + feat32_up
81
+ feat16_up = F.interpolate(feat16_sum, (h8, w8), mode='nearest')
82
+ feat16_up = self.conv_head16(feat16_up)
83
+
84
+ return feat8, feat16_up, feat32_up # x8, x8, x16
85
+
86
+
87
+ class FeatureFusionModule(nn.Module):
88
+
89
+ def __init__(self, in_chan, out_chan):
90
+ super(FeatureFusionModule, self).__init__()
91
+ self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
92
+ self.conv1 = nn.Conv2d(out_chan, out_chan // 4, kernel_size=1, stride=1, padding=0, bias=False)
93
+ self.conv2 = nn.Conv2d(out_chan // 4, out_chan, kernel_size=1, stride=1, padding=0, bias=False)
94
+ self.relu = nn.ReLU(inplace=True)
95
+ self.sigmoid = nn.Sigmoid()
96
+
97
+ def forward(self, fsp, fcp):
98
+ fcat = torch.cat([fsp, fcp], dim=1)
99
+ feat = self.convblk(fcat)
100
+ atten = F.avg_pool2d(feat, feat.size()[2:])
101
+ atten = self.conv1(atten)
102
+ atten = self.relu(atten)
103
+ atten = self.conv2(atten)
104
+ atten = self.sigmoid(atten)
105
+ feat_atten = torch.mul(feat, atten)
106
+ feat_out = feat_atten + feat
107
+ return feat_out
108
+
109
+
110
+ class BiSeNet(nn.Module):
111
+
112
+ def __init__(self, num_class):
113
+ super(BiSeNet, self).__init__()
114
+ self.cp = ContextPath()
115
+ self.ffm = FeatureFusionModule(256, 256)
116
+ self.conv_out = BiSeNetOutput(256, 256, num_class)
117
+ self.conv_out16 = BiSeNetOutput(128, 64, num_class)
118
+ self.conv_out32 = BiSeNetOutput(128, 64, num_class)
119
+
120
+ def forward(self, x, return_feat=False):
121
+ h, w = x.size()[2:]
122
+ feat_res8, feat_cp8, feat_cp16 = self.cp(x) # return res3b1 feature
123
+ feat_sp = feat_res8 # replace spatial path feature with res3b1 feature
124
+ feat_fuse = self.ffm(feat_sp, feat_cp8)
125
+
126
+ out, feat = self.conv_out(feat_fuse)
127
+ out16, feat16 = self.conv_out16(feat_cp8)
128
+ out32, feat32 = self.conv_out32(feat_cp16)
129
+
130
+ out = F.interpolate(out, (h, w), mode='bilinear', align_corners=True)
131
+ out16 = F.interpolate(out16, (h, w), mode='bilinear', align_corners=True)
132
+ out32 = F.interpolate(out32, (h, w), mode='bilinear', align_corners=True)
133
+
134
+ if return_feat:
135
+ feat = F.interpolate(feat, (h, w), mode='bilinear', align_corners=True)
136
+ feat16 = F.interpolate(feat16, (h, w), mode='bilinear', align_corners=True)
137
+ feat32 = F.interpolate(feat32, (h, w), mode='bilinear', align_corners=True)
138
+ return out, out16, out32, feat, feat16, feat32
139
+ else:
140
+ return out, out16, out32
extras/facexlib/parsing/parsenet.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Modified from https://github.com/chaofengc/PSFRGAN
2
+ """
3
+ import numpy as np
4
+ import torch.nn as nn
5
+ from torch.nn import functional as F
6
+
7
+
8
+ class NormLayer(nn.Module):
9
+ """Normalization Layers.
10
+
11
+ Args:
12
+ channels: input channels, for batch norm and instance norm.
13
+ input_size: input shape without batch size, for layer norm.
14
+ """
15
+
16
+ def __init__(self, channels, normalize_shape=None, norm_type='bn'):
17
+ super(NormLayer, self).__init__()
18
+ norm_type = norm_type.lower()
19
+ self.norm_type = norm_type
20
+ if norm_type == 'bn':
21
+ self.norm = nn.BatchNorm2d(channels, affine=True)
22
+ elif norm_type == 'in':
23
+ self.norm = nn.InstanceNorm2d(channels, affine=False)
24
+ elif norm_type == 'gn':
25
+ self.norm = nn.GroupNorm(32, channels, affine=True)
26
+ elif norm_type == 'pixel':
27
+ self.norm = lambda x: F.normalize(x, p=2, dim=1)
28
+ elif norm_type == 'layer':
29
+ self.norm = nn.LayerNorm(normalize_shape)
30
+ elif norm_type == 'none':
31
+ self.norm = lambda x: x * 1.0
32
+ else:
33
+ assert 1 == 0, f'Norm type {norm_type} not support.'
34
+
35
+ def forward(self, x, ref=None):
36
+ if self.norm_type == 'spade':
37
+ return self.norm(x, ref)
38
+ else:
39
+ return self.norm(x)
40
+
41
+
42
+ class ReluLayer(nn.Module):
43
+ """Relu Layer.
44
+
45
+ Args:
46
+ relu type: type of relu layer, candidates are
47
+ - ReLU
48
+ - LeakyReLU: default relu slope 0.2
49
+ - PRelu
50
+ - SELU
51
+ - none: direct pass
52
+ """
53
+
54
+ def __init__(self, channels, relu_type='relu'):
55
+ super(ReluLayer, self).__init__()
56
+ relu_type = relu_type.lower()
57
+ if relu_type == 'relu':
58
+ self.func = nn.ReLU(True)
59
+ elif relu_type == 'leakyrelu':
60
+ self.func = nn.LeakyReLU(0.2, inplace=True)
61
+ elif relu_type == 'prelu':
62
+ self.func = nn.PReLU(channels)
63
+ elif relu_type == 'selu':
64
+ self.func = nn.SELU(True)
65
+ elif relu_type == 'none':
66
+ self.func = lambda x: x * 1.0
67
+ else:
68
+ assert 1 == 0, f'Relu type {relu_type} not support.'
69
+
70
+ def forward(self, x):
71
+ return self.func(x)
72
+
73
+
74
+ class ConvLayer(nn.Module):
75
+
76
+ def __init__(self,
77
+ in_channels,
78
+ out_channels,
79
+ kernel_size=3,
80
+ scale='none',
81
+ norm_type='none',
82
+ relu_type='none',
83
+ use_pad=True,
84
+ bias=True):
85
+ super(ConvLayer, self).__init__()
86
+ self.use_pad = use_pad
87
+ self.norm_type = norm_type
88
+ if norm_type in ['bn']:
89
+ bias = False
90
+
91
+ stride = 2 if scale == 'down' else 1
92
+
93
+ self.scale_func = lambda x: x
94
+ if scale == 'up':
95
+ self.scale_func = lambda x: nn.functional.interpolate(x, scale_factor=2, mode='nearest')
96
+
97
+ self.reflection_pad = nn.ReflectionPad2d(int(np.ceil((kernel_size - 1.) / 2)))
98
+ self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, bias=bias)
99
+
100
+ self.relu = ReluLayer(out_channels, relu_type)
101
+ self.norm = NormLayer(out_channels, norm_type=norm_type)
102
+
103
+ def forward(self, x):
104
+ out = self.scale_func(x)
105
+ if self.use_pad:
106
+ out = self.reflection_pad(out)
107
+ out = self.conv2d(out)
108
+ out = self.norm(out)
109
+ out = self.relu(out)
110
+ return out
111
+
112
+
113
+ class ResidualBlock(nn.Module):
114
+ """
115
+ Residual block recommended in: http://torch.ch/blog/2016/02/04/resnets.html
116
+ """
117
+
118
+ def __init__(self, c_in, c_out, relu_type='prelu', norm_type='bn', scale='none'):
119
+ super(ResidualBlock, self).__init__()
120
+
121
+ if scale == 'none' and c_in == c_out:
122
+ self.shortcut_func = lambda x: x
123
+ else:
124
+ self.shortcut_func = ConvLayer(c_in, c_out, 3, scale)
125
+
126
+ scale_config_dict = {'down': ['none', 'down'], 'up': ['up', 'none'], 'none': ['none', 'none']}
127
+ scale_conf = scale_config_dict[scale]
128
+
129
+ self.conv1 = ConvLayer(c_in, c_out, 3, scale_conf[0], norm_type=norm_type, relu_type=relu_type)
130
+ self.conv2 = ConvLayer(c_out, c_out, 3, scale_conf[1], norm_type=norm_type, relu_type='none')
131
+
132
+ def forward(self, x):
133
+ identity = self.shortcut_func(x)
134
+
135
+ res = self.conv1(x)
136
+ res = self.conv2(res)
137
+ return identity + res
138
+
139
+
140
+ class ParseNet(nn.Module):
141
+
142
+ def __init__(self,
143
+ in_size=128,
144
+ out_size=128,
145
+ min_feat_size=32,
146
+ base_ch=64,
147
+ parsing_ch=19,
148
+ res_depth=10,
149
+ relu_type='LeakyReLU',
150
+ norm_type='bn',
151
+ ch_range=[32, 256]):
152
+ super().__init__()
153
+ self.res_depth = res_depth
154
+ act_args = {'norm_type': norm_type, 'relu_type': relu_type}
155
+ min_ch, max_ch = ch_range
156
+
157
+ ch_clip = lambda x: max(min_ch, min(x, max_ch)) # noqa: E731
158
+ min_feat_size = min(in_size, min_feat_size)
159
+
160
+ down_steps = int(np.log2(in_size // min_feat_size))
161
+ up_steps = int(np.log2(out_size // min_feat_size))
162
+
163
+ # =============== define encoder-body-decoder ====================
164
+ self.encoder = []
165
+ self.encoder.append(ConvLayer(3, base_ch, 3, 1))
166
+ head_ch = base_ch
167
+ for i in range(down_steps):
168
+ cin, cout = ch_clip(head_ch), ch_clip(head_ch * 2)
169
+ self.encoder.append(ResidualBlock(cin, cout, scale='down', **act_args))
170
+ head_ch = head_ch * 2
171
+
172
+ self.body = []
173
+ for i in range(res_depth):
174
+ self.body.append(ResidualBlock(ch_clip(head_ch), ch_clip(head_ch), **act_args))
175
+
176
+ self.decoder = []
177
+ for i in range(up_steps):
178
+ cin, cout = ch_clip(head_ch), ch_clip(head_ch // 2)
179
+ self.decoder.append(ResidualBlock(cin, cout, scale='up', **act_args))
180
+ head_ch = head_ch // 2
181
+
182
+ self.encoder = nn.Sequential(*self.encoder)
183
+ self.body = nn.Sequential(*self.body)
184
+ self.decoder = nn.Sequential(*self.decoder)
185
+ self.out_img_conv = ConvLayer(ch_clip(head_ch), 3)
186
+ self.out_mask_conv = ConvLayer(ch_clip(head_ch), parsing_ch)
187
+
188
+ def forward(self, x):
189
+ feat = self.encoder(x)
190
+ x = feat + self.body(feat)
191
+ x = self.decoder(x)
192
+ out_img = self.out_img_conv(x)
193
+ out_mask = self.out_mask_conv(x)
194
+ return out_mask, out_img
extras/facexlib/parsing/resnet.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch.nn.functional as F
3
+
4
+
5
+ def conv3x3(in_planes, out_planes, stride=1):
6
+ """3x3 convolution with padding"""
7
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
8
+
9
+
10
+ class BasicBlock(nn.Module):
11
+
12
+ def __init__(self, in_chan, out_chan, stride=1):
13
+ super(BasicBlock, self).__init__()
14
+ self.conv1 = conv3x3(in_chan, out_chan, stride)
15
+ self.bn1 = nn.BatchNorm2d(out_chan)
16
+ self.conv2 = conv3x3(out_chan, out_chan)
17
+ self.bn2 = nn.BatchNorm2d(out_chan)
18
+ self.relu = nn.ReLU(inplace=True)
19
+ self.downsample = None
20
+ if in_chan != out_chan or stride != 1:
21
+ self.downsample = nn.Sequential(
22
+ nn.Conv2d(in_chan, out_chan, kernel_size=1, stride=stride, bias=False),
23
+ nn.BatchNorm2d(out_chan),
24
+ )
25
+
26
+ def forward(self, x):
27
+ residual = self.conv1(x)
28
+ residual = F.relu(self.bn1(residual))
29
+ residual = self.conv2(residual)
30
+ residual = self.bn2(residual)
31
+
32
+ shortcut = x
33
+ if self.downsample is not None:
34
+ shortcut = self.downsample(x)
35
+
36
+ out = shortcut + residual
37
+ out = self.relu(out)
38
+ return out
39
+
40
+
41
+ def create_layer_basic(in_chan, out_chan, bnum, stride=1):
42
+ layers = [BasicBlock(in_chan, out_chan, stride=stride)]
43
+ for i in range(bnum - 1):
44
+ layers.append(BasicBlock(out_chan, out_chan, stride=1))
45
+ return nn.Sequential(*layers)
46
+
47
+
48
+ class ResNet18(nn.Module):
49
+
50
+ def __init__(self):
51
+ super(ResNet18, self).__init__()
52
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
53
+ self.bn1 = nn.BatchNorm2d(64)
54
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
55
+ self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
56
+ self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
57
+ self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
58
+ self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
59
+
60
+ def forward(self, x):
61
+ x = self.conv1(x)
62
+ x = F.relu(self.bn1(x))
63
+ x = self.maxpool(x)
64
+
65
+ x = self.layer1(x)
66
+ feat8 = self.layer2(x) # 1/8
67
+ feat16 = self.layer3(feat8) # 1/16
68
+ feat32 = self.layer4(feat16) # 1/32
69
+ return feat8, feat16, feat32
extras/facexlib/utils/__init__.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from .face_utils import align_crop_face_landmarks, compute_increased_bbox, get_valid_bboxes, paste_face_back
2
+ from .misc import img2tensor, load_file_from_url, scandir
3
+
4
+ __all__ = [
5
+ 'align_crop_face_landmarks', 'compute_increased_bbox', 'get_valid_bboxes', 'load_file_from_url', 'paste_face_back',
6
+ 'img2tensor', 'scandir'
7
+ ]
extras/facexlib/utils/face_restoration_helper.py ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import os
4
+ import torch
5
+ from torchvision.transforms.functional import normalize
6
+
7
+ from extras.facexlib.detection import init_detection_model
8
+ from extras.facexlib.parsing import init_parsing_model
9
+ from extras.facexlib.utils.misc import img2tensor, imwrite
10
+
11
+
12
+ def get_largest_face(det_faces, h, w):
13
+
14
+ def get_location(val, length):
15
+ if val < 0:
16
+ return 0
17
+ elif val > length:
18
+ return length
19
+ else:
20
+ return val
21
+
22
+ face_areas = []
23
+ for det_face in det_faces:
24
+ left = get_location(det_face[0], w)
25
+ right = get_location(det_face[2], w)
26
+ top = get_location(det_face[1], h)
27
+ bottom = get_location(det_face[3], h)
28
+ face_area = (right - left) * (bottom - top)
29
+ face_areas.append(face_area)
30
+ largest_idx = face_areas.index(max(face_areas))
31
+ return det_faces[largest_idx], largest_idx
32
+
33
+
34
+ def get_center_face(det_faces, h=0, w=0, center=None):
35
+ if center is not None:
36
+ center = np.array(center)
37
+ else:
38
+ center = np.array([w / 2, h / 2])
39
+ center_dist = []
40
+ for det_face in det_faces:
41
+ face_center = np.array([(det_face[0] + det_face[2]) / 2, (det_face[1] + det_face[3]) / 2])
42
+ dist = np.linalg.norm(face_center - center)
43
+ center_dist.append(dist)
44
+ center_idx = center_dist.index(min(center_dist))
45
+ return det_faces[center_idx], center_idx
46
+
47
+
48
+ class FaceRestoreHelper(object):
49
+ """Helper for the face restoration pipeline (base class)."""
50
+
51
+ def __init__(self,
52
+ upscale_factor,
53
+ face_size=512,
54
+ crop_ratio=(1, 1),
55
+ det_model='retinaface_resnet50',
56
+ save_ext='png',
57
+ template_3points=False,
58
+ pad_blur=False,
59
+ use_parse=False,
60
+ device=None,
61
+ model_rootpath=None):
62
+ self.template_3points = template_3points # improve robustness
63
+ self.upscale_factor = upscale_factor
64
+ # the cropped face ratio based on the square face
65
+ self.crop_ratio = crop_ratio # (h, w)
66
+ assert (self.crop_ratio[0] >= 1 and self.crop_ratio[1] >= 1), 'crop ration only supports >=1'
67
+ self.face_size = (int(face_size * self.crop_ratio[1]), int(face_size * self.crop_ratio[0]))
68
+
69
+ if self.template_3points:
70
+ self.face_template = np.array([[192, 240], [319, 240], [257, 371]])
71
+ else:
72
+ # standard 5 landmarks for FFHQ faces with 512 x 512
73
+ self.face_template = np.array([[192.98138, 239.94708], [318.90277, 240.1936], [256.63416, 314.01935],
74
+ [201.26117, 371.41043], [313.08905, 371.15118]])
75
+ self.face_template = self.face_template * (face_size / 512.0)
76
+ if self.crop_ratio[0] > 1:
77
+ self.face_template[:, 1] += face_size * (self.crop_ratio[0] - 1) / 2
78
+ if self.crop_ratio[1] > 1:
79
+ self.face_template[:, 0] += face_size * (self.crop_ratio[1] - 1) / 2
80
+ self.save_ext = save_ext
81
+ self.pad_blur = pad_blur
82
+ if self.pad_blur is True:
83
+ self.template_3points = False
84
+
85
+ self.all_landmarks_5 = []
86
+ self.det_faces = []
87
+ self.affine_matrices = []
88
+ self.inverse_affine_matrices = []
89
+ self.cropped_faces = []
90
+ self.restored_faces = []
91
+ self.pad_input_imgs = []
92
+
93
+ if device is None:
94
+ self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
95
+ else:
96
+ self.device = device
97
+
98
+ # init face detection model
99
+ self.face_det = init_detection_model(det_model, half=False, device=self.device, model_rootpath=model_rootpath)
100
+
101
+ # init face parsing model
102
+ self.use_parse = use_parse
103
+ self.face_parse = init_parsing_model(model_name='parsenet', device=self.device, model_rootpath=model_rootpath)
104
+
105
+ def set_upscale_factor(self, upscale_factor):
106
+ self.upscale_factor = upscale_factor
107
+
108
+ def read_image(self, img):
109
+ """img can be image path or cv2 loaded image."""
110
+ # self.input_img is Numpy array, (h, w, c), BGR, uint8, [0, 255]
111
+ if isinstance(img, str):
112
+ img = cv2.imread(img)
113
+
114
+ if np.max(img) > 256: # 16-bit image
115
+ img = img / 65535 * 255
116
+ if len(img.shape) == 2: # gray image
117
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
118
+ elif img.shape[2] == 4: # RGBA image with alpha channel
119
+ img = img[:, :, 0:3]
120
+
121
+ self.input_img = img
122
+
123
+ def get_face_landmarks_5(self,
124
+ only_keep_largest=False,
125
+ only_center_face=False,
126
+ resize=None,
127
+ blur_ratio=0.01,
128
+ eye_dist_threshold=None):
129
+ if resize is None:
130
+ scale = 1
131
+ input_img = self.input_img
132
+ else:
133
+ h, w = self.input_img.shape[0:2]
134
+ scale = min(h, w) / resize
135
+ h, w = int(h / scale), int(w / scale)
136
+ input_img = cv2.resize(self.input_img, (w, h), interpolation=cv2.INTER_LANCZOS4)
137
+
138
+ with torch.no_grad():
139
+ bboxes = self.face_det.detect_faces(input_img, 0.97) * scale
140
+ for bbox in bboxes:
141
+ # remove faces with too small eye distance: side faces or too small faces
142
+ eye_dist = np.linalg.norm([bbox[5] - bbox[7], bbox[6] - bbox[8]])
143
+ if eye_dist_threshold is not None and (eye_dist < eye_dist_threshold):
144
+ continue
145
+
146
+ if self.template_3points:
147
+ landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 11, 2)])
148
+ else:
149
+ landmark = np.array([[bbox[i], bbox[i + 1]] for i in range(5, 15, 2)])
150
+ self.all_landmarks_5.append(landmark)
151
+ self.det_faces.append(bbox[0:5])
152
+ if len(self.det_faces) == 0:
153
+ return 0
154
+ if only_keep_largest:
155
+ h, w, _ = self.input_img.shape
156
+ self.det_faces, largest_idx = get_largest_face(self.det_faces, h, w)
157
+ self.all_landmarks_5 = [self.all_landmarks_5[largest_idx]]
158
+ elif only_center_face:
159
+ h, w, _ = self.input_img.shape
160
+ self.det_faces, center_idx = get_center_face(self.det_faces, h, w)
161
+ self.all_landmarks_5 = [self.all_landmarks_5[center_idx]]
162
+
163
+ # pad blurry images
164
+ if self.pad_blur:
165
+ self.pad_input_imgs = []
166
+ for landmarks in self.all_landmarks_5:
167
+ # get landmarks
168
+ eye_left = landmarks[0, :]
169
+ eye_right = landmarks[1, :]
170
+ eye_avg = (eye_left + eye_right) * 0.5
171
+ mouth_avg = (landmarks[3, :] + landmarks[4, :]) * 0.5
172
+ eye_to_eye = eye_right - eye_left
173
+ eye_to_mouth = mouth_avg - eye_avg
174
+
175
+ # Get the oriented crop rectangle
176
+ # x: half width of the oriented crop rectangle
177
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
178
+ # - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
179
+ # norm with the hypotenuse: get the direction
180
+ x /= np.hypot(*x) # get the hypotenuse of a right triangle
181
+ rect_scale = 1.5
182
+ x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
183
+ # y: half height of the oriented crop rectangle
184
+ y = np.flipud(x) * [-1, 1]
185
+
186
+ # c: center
187
+ c = eye_avg + eye_to_mouth * 0.1
188
+ # quad: (left_top, left_bottom, right_bottom, right_top)
189
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
190
+ # qsize: side length of the square
191
+ qsize = np.hypot(*x) * 2
192
+ border = max(int(np.rint(qsize * 0.1)), 3)
193
+
194
+ # get pad
195
+ # pad: (width_left, height_top, width_right, height_bottom)
196
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
197
+ int(np.ceil(max(quad[:, 1]))))
198
+ pad = [
199
+ max(-pad[0] + border, 1),
200
+ max(-pad[1] + border, 1),
201
+ max(pad[2] - self.input_img.shape[0] + border, 1),
202
+ max(pad[3] - self.input_img.shape[1] + border, 1)
203
+ ]
204
+
205
+ if max(pad) > 1:
206
+ # pad image
207
+ pad_img = np.pad(self.input_img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
208
+ # modify landmark coords
209
+ landmarks[:, 0] += pad[0]
210
+ landmarks[:, 1] += pad[1]
211
+ # blur pad images
212
+ h, w, _ = pad_img.shape
213
+ y, x, _ = np.ogrid[:h, :w, :1]
214
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
215
+ np.float32(w - 1 - x) / pad[2]),
216
+ 1.0 - np.minimum(np.float32(y) / pad[1],
217
+ np.float32(h - 1 - y) / pad[3]))
218
+ blur = int(qsize * blur_ratio)
219
+ if blur % 2 == 0:
220
+ blur += 1
221
+ blur_img = cv2.boxFilter(pad_img, 0, ksize=(blur, blur))
222
+ # blur_img = cv2.GaussianBlur(pad_img, (blur, blur), 0)
223
+
224
+ pad_img = pad_img.astype('float32')
225
+ pad_img += (blur_img - pad_img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
226
+ pad_img += (np.median(pad_img, axis=(0, 1)) - pad_img) * np.clip(mask, 0.0, 1.0)
227
+ pad_img = np.clip(pad_img, 0, 255) # float32, [0, 255]
228
+ self.pad_input_imgs.append(pad_img)
229
+ else:
230
+ self.pad_input_imgs.append(np.copy(self.input_img))
231
+
232
+ return len(self.all_landmarks_5)
233
+
234
+ def align_warp_face(self, save_cropped_path=None, border_mode='constant'):
235
+ """Align and warp faces with face template.
236
+ """
237
+ if self.pad_blur:
238
+ assert len(self.pad_input_imgs) == len(
239
+ self.all_landmarks_5), f'Mismatched samples: {len(self.pad_input_imgs)} and {len(self.all_landmarks_5)}'
240
+ for idx, landmark in enumerate(self.all_landmarks_5):
241
+ # use 5 landmarks to get affine matrix
242
+ # use cv2.LMEDS method for the equivalence to skimage transform
243
+ # ref: https://blog.csdn.net/yichxi/article/details/115827338
244
+ affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
245
+ self.affine_matrices.append(affine_matrix)
246
+ # warp and crop faces
247
+ if border_mode == 'constant':
248
+ border_mode = cv2.BORDER_CONSTANT
249
+ elif border_mode == 'reflect101':
250
+ border_mode = cv2.BORDER_REFLECT101
251
+ elif border_mode == 'reflect':
252
+ border_mode = cv2.BORDER_REFLECT
253
+ if self.pad_blur:
254
+ input_img = self.pad_input_imgs[idx]
255
+ else:
256
+ input_img = self.input_img
257
+ cropped_face = cv2.warpAffine(
258
+ input_img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)) # gray
259
+ self.cropped_faces.append(cropped_face)
260
+ # save the cropped face
261
+ if save_cropped_path is not None:
262
+ path = os.path.splitext(save_cropped_path)[0]
263
+ save_path = f'{path}_{idx:02d}.{self.save_ext}'
264
+ imwrite(cropped_face, save_path)
265
+
266
+ def get_inverse_affine(self, save_inverse_affine_path=None):
267
+ """Get inverse affine matrix."""
268
+ for idx, affine_matrix in enumerate(self.affine_matrices):
269
+ inverse_affine = cv2.invertAffineTransform(affine_matrix)
270
+ inverse_affine *= self.upscale_factor
271
+ self.inverse_affine_matrices.append(inverse_affine)
272
+ # save inverse affine matrices
273
+ if save_inverse_affine_path is not None:
274
+ path, _ = os.path.splitext(save_inverse_affine_path)
275
+ save_path = f'{path}_{idx:02d}.pth'
276
+ torch.save(inverse_affine, save_path)
277
+
278
+ def add_restored_face(self, face):
279
+ self.restored_faces.append(face)
280
+
281
+ def paste_faces_to_input_image(self, save_path=None, upsample_img=None):
282
+ h, w, _ = self.input_img.shape
283
+ h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
284
+
285
+ if upsample_img is None:
286
+ # simply resize the background
287
+ upsample_img = cv2.resize(self.input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
288
+ else:
289
+ upsample_img = cv2.resize(upsample_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
290
+
291
+ assert len(self.restored_faces) == len(
292
+ self.inverse_affine_matrices), ('length of restored_faces and affine_matrices are different.')
293
+ for restored_face, inverse_affine in zip(self.restored_faces, self.inverse_affine_matrices):
294
+ # Add an offset to inverse affine matrix, for more precise back alignment
295
+ if self.upscale_factor > 1:
296
+ extra_offset = 0.5 * self.upscale_factor
297
+ else:
298
+ extra_offset = 0
299
+ inverse_affine[:, 2] += extra_offset
300
+ inv_restored = cv2.warpAffine(restored_face, inverse_affine, (w_up, h_up))
301
+
302
+ if self.use_parse:
303
+ # inference
304
+ face_input = cv2.resize(restored_face, (512, 512), interpolation=cv2.INTER_LINEAR)
305
+ face_input = img2tensor(face_input.astype('float32') / 255., bgr2rgb=True, float32=True)
306
+ normalize(face_input, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True)
307
+ face_input = torch.unsqueeze(face_input, 0).to(self.device)
308
+ with torch.no_grad():
309
+ out = self.face_parse(face_input)[0]
310
+ out = out.argmax(dim=1).squeeze().cpu().numpy()
311
+
312
+ mask = np.zeros(out.shape)
313
+ MASK_COLORMAP = [0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 255, 0, 0, 0]
314
+ for idx, color in enumerate(MASK_COLORMAP):
315
+ mask[out == idx] = color
316
+ # blur the mask
317
+ mask = cv2.GaussianBlur(mask, (101, 101), 11)
318
+ mask = cv2.GaussianBlur(mask, (101, 101), 11)
319
+ # remove the black borders
320
+ thres = 10
321
+ mask[:thres, :] = 0
322
+ mask[-thres:, :] = 0
323
+ mask[:, :thres] = 0
324
+ mask[:, -thres:] = 0
325
+ mask = mask / 255.
326
+
327
+ mask = cv2.resize(mask, restored_face.shape[:2])
328
+ mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up), flags=3)
329
+ inv_soft_mask = mask[:, :, None]
330
+ pasted_face = inv_restored
331
+
332
+ else: # use square parse maps
333
+ mask = np.ones(self.face_size, dtype=np.float32)
334
+ inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
335
+ # remove the black borders
336
+ inv_mask_erosion = cv2.erode(
337
+ inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8))
338
+ pasted_face = inv_mask_erosion[:, :, None] * inv_restored
339
+ total_face_area = np.sum(inv_mask_erosion) # // 3
340
+ # compute the fusion edge based on the area of face
341
+ w_edge = int(total_face_area**0.5) // 20
342
+ erosion_radius = w_edge * 2
343
+ inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
344
+ blur_size = w_edge * 2
345
+ inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
346
+ if len(upsample_img.shape) == 2: # upsample_img is gray image
347
+ upsample_img = upsample_img[:, :, None]
348
+ inv_soft_mask = inv_soft_mask[:, :, None]
349
+
350
+ if len(upsample_img.shape) == 3 and upsample_img.shape[2] == 4: # alpha channel
351
+ alpha = upsample_img[:, :, 3:]
352
+ upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img[:, :, 0:3]
353
+ upsample_img = np.concatenate((upsample_img, alpha), axis=2)
354
+ else:
355
+ upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
356
+
357
+ if np.max(upsample_img) > 256: # 16-bit image
358
+ upsample_img = upsample_img.astype(np.uint16)
359
+ else:
360
+ upsample_img = upsample_img.astype(np.uint8)
361
+ if save_path is not None:
362
+ path = os.path.splitext(save_path)[0]
363
+ save_path = f'{path}.{self.save_ext}'
364
+ imwrite(upsample_img, save_path)
365
+ return upsample_img
366
+
367
+ def clean_all(self):
368
+ self.all_landmarks_5 = []
369
+ self.restored_faces = []
370
+ self.affine_matrices = []
371
+ self.cropped_faces = []
372
+ self.inverse_affine_matrices = []
373
+ self.det_faces = []
374
+ self.pad_input_imgs = []