File size: 7,060 Bytes
6a87547
 
 
dae6484
 
6a87547
 
 
 
702754c
ad0cea8
702754c
579892d
 
 
beb0b25
 
6a87547
 
 
 
 
 
b832af5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a87547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
beb0b25
ad0cea8
beb0b25
e26c748
6a87547
ad0cea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e26c748
6a87547
 
 
ad0cea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a87547
 
 
 
 
 
 
 
 
ad0cea8
 
 
 
 
 
 
beb0b25
6a87547
 
ad0cea8
 
 
beb0b25
 
 
 
 
 
 
 
 
 
ad0cea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a87547
ad0cea8
 
 
 
 
6a87547
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import torch
import gradio as gr
from PIL import Image, ImageOps

from huggingface_hub import snapshot_download
from pyramid_dit import PyramidDiTForVideoGeneration
from diffusers.utils import export_to_video

import spaces 
import uuid

import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

is_canonical = True if os.environ.get("SPACE_ID") == "multimodalart/pyramid-flow" else False

# Constants
MODEL_PATH = "pyramid-flow-model"
MODEL_REPO = "rain1011/pyramid-flow-sd3"
MODEL_VARIANT = "diffusion_transformer_768p"
MODEL_DTYPE = "bf16"

def center_crop(image, target_width, target_height):
    width, height = image.size
    aspect_ratio_target = target_width / target_height
    aspect_ratio_image = width / height

    if aspect_ratio_image > aspect_ratio_target:
        # Crop the width (left and right)
        new_width = int(height * aspect_ratio_target)
        left = (width - new_width) // 2
        right = left + new_width
        top, bottom = 0, height
    else:
        # Crop the height (top and bottom)
        new_height = int(width / aspect_ratio_target)
        top = (height - new_height) // 2
        bottom = top + new_height
        left, right = 0, width

    image = image.crop((left, top, right, bottom))
    return image

# Download and load the model
def load_model():
    if not os.path.exists(MODEL_PATH):
        snapshot_download(MODEL_REPO, local_dir=MODEL_PATH, local_dir_use_symlinks=False, repo_type='model')
    
    model = PyramidDiTForVideoGeneration(
        MODEL_PATH,
        MODEL_DTYPE,
        model_variant=MODEL_VARIANT,
    )
    
    model.vae.to("cuda")
    model.dit.to("cuda")
    model.text_encoder.to("cuda")
    model.vae.enable_tiling()
    
    return model

# Global model variable
model = load_model()

# Text-to-video generation function
@spaces.GPU(duration=120)
def generate_video(image, prompt, duration, guidance_scale, video_guidance_scale):
    multiplier = 0.8 if is_canonical else 2.4
    temp = int(duration * 0.8)  # Convert seconds to temp value (assuming 24 FPS)
    torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
    if(image):
        cropped_image = center_crop(image, 1280, 720)
        resized_image = cropped_image.resize((1280, 720))
        with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
            frames = model.generate_i2v(
                prompt=prompt,
                input_image=resized_image,
                num_inference_steps=[10, 10, 10],
                temp=temp,
                guidance_scale=7.0,
                video_guidance_scale=video_guidance_scale,
                output_type="pil",
                save_memory=True,
            )
    else:
        with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
            frames = model.generate(
                prompt=prompt,
                num_inference_steps=[20, 20, 20],
                video_num_inference_steps=[10, 10, 10],
                height=768,
                width=1280,
                temp=temp,
                guidance_scale=guidance_scale,
                video_guidance_scale=video_guidance_scale,
                output_type="pil",
                save_memory=True,
            )
    output_path = f"{str(uuid.uuid4())}_output_video.mp4"
    export_to_video(frames, output_path, fps=8)
    return output_path

# Image-to-video generation function
#@spaces.GPU(duration=240)
#def generate_video_from_image(image, prompt, duration, video_guidance_scale):
#    temp = int(duration * 2.4)  # Convert seconds to temp value (assuming 24 FPS)
#    torch_dtype = torch.bfloat16 if MODEL_DTYPE == "bf16" else torch.float32
#    
#    target_size = (1280, 720)
#    cropped_image = center_crop(image, 1280, 720)
#    resized_image = cropped_image.resize((1280, 720))
#    
#    with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype):
#        frames = model.generate_i2v(
#            prompt=prompt,
#            input_image=resized_image,
#            num_inference_steps=[10, 10, 10],
#            temp=temp,
#            guidance_scale=7.0,
#            video_guidance_scale=video_guidance_scale,
#            output_type="pil",
#            save_memory=True,
#        )
    
    output_path = "output_video_i2v.mp4"
    export_to_video(frames, output_path, fps=24)
    return output_path

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Pyramid Flow Video Generation Demo")
    
    #with gr.Tab("Text-to-Video"):
    with gr.Row():
        with gr.Column():
            with gr.Accordion("Image to Video (optional)", open=False):
                i2v_image = gr.Image(type="pil", label="Input Image")
            t2v_prompt = gr.Textbox(label="Prompt")
            with gr.Accordion("Advanced settings", open=False):
                t2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)", visible=not is_canonical)
                t2v_guidance_scale = gr.Slider(minimum=1, maximum=15, value=9, step=0.1, label="Guidance Scale")
                t2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=5, step=0.1, label="Video Guidance Scale")
            t2v_generate_btn = gr.Button("Generate Video")
        with gr.Column():
            t2v_output = gr.Video(label="Generated Video")
            gr.HTML("""
                <div style="display: flex; flex-direction: column;justify-content: center; align-items: center; text-align: center;">
                    <p style="display: flex;gap: 6px;">
                         <a href="https://huggingface.co/spaces/multimodalart/pyramid-flow?duplicate=true">
                            <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" alt="Duplicate this Space">
                        </a>
                    </p>
                    <p>to use privately and generate videos up to 10s</p>
                </div>
                """)
    t2v_generate_btn.click(
        generate_video,
        inputs=[i2v_image, t2v_prompt, t2v_duration, t2v_guidance_scale, t2v_video_guidance_scale],
        outputs=t2v_output
    )
    
    #with gr.Tab("Image-to-Video"):
    #    with gr.Row():
    #        with gr.Column():
                
    #            i2v_prompt = gr.Textbox(label="Prompt")
    #            i2v_duration = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Duration (seconds)")
    #            i2v_video_guidance_scale = gr.Slider(minimum=1, maximum=15, value=4, step=0.1, label="Video Guidance Scale")
    #            i2v_generate_btn = gr.Button("Generate Video")
    #        with gr.Column():
    #            i2v_output = gr.Video(label="Generated Video")
        
        #i2v_generate_btn.click(
        #    generate_video_from_image,
        #    inputs=[i2v_image, i2v_prompt, i2v_duration, i2v_video_guidance_scale],
        #    outputs=i2v_output
        #)

demo.launch()