import gradio as gr from fastai.vision.all import * import skimage # create function to distinguish dogs from cats def label_func(f): return f[0].isupper() learn = load_learner('export.pkl') # labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return pred # return {labels[i]: float(probs[i]) for i in range(len(labels))} # ('False', TensorBase(0), TensorBase([9.9999e-01, 7.5253e-06])) title = "Dog Cat Classifier" description = "A dog cat classifier. Created as a demo for Gradio and HuggingFace Spaces." article="" examples = ['siamese.jpg'] interpretation='default' enable_queue=True gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), title=title, description=description, article=article, examples=examples, interpretation=interpretation, enable_queue=enable_queue).launch()