#from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline | |
#import gradio as grad | |
#import ast | |
#mdl_name = "deepset/roberta-base-squad2" | |
#my_pipeline = pipeline('question-answering', model=mdl_name,tokenizer=mdl_name) | |
#def answer_question(question,context): | |
#text= "{"+"'question': '"+question+"','context':'"+context+"'}" | |
#di=ast.literal_eval(text) | |
#response = my_pipeline(di) | |
#return response | |
#grad.Interface(answer_question, inputs=["text","text"],outputs="text").launch() | |
from transformers import pipeline | |
import gradio as grad | |
mdl_name = "Helsinki-NLP/opus-mt-en-de" | |
opus_translator = pipeline("translation", model=mdl_name) | |
def translate(text): | |
response = opus_translator(text) | |
return response | |
grad.Interface(translate, inputs=["text",], outputs="text").launch() | |