Spaces:
sonalkum
/
Running on Zero

File size: 6,049 Bytes
ed7a497
 
 
 
f21d654
fa57c60
ed7a497
 
 
 
 
 
fa57c60
 
ed7a497
 
 
 
1b71190
ed7a497
fa57c60
ed7a497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88dae6c
ed7a497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fab8b65
414511f
 
 
ed7a497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f21d654
ed7a497
87bf417
ed7a497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2a134d
ed7a497
88dae6c
ed7a497
 
88dae6c
 
 
 
ed7a497
e2a134d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import gradio as gr
import torch
import torchaudio
import spaces
from peft.src.peft import (
    LoraConfig,
    get_peft_model,
    get_peft_model_state_dict,
    prepare_model_for_int8_training,
    set_peft_model_state_dict,
)
from hf.transformers.src.transformers.generation import GenerationConfig
from hf.transformers.src.transformers.models.llama import LlamaForCausalLM, LlamaTokenizer, LlamaConfig
from utils.prompter import Prompter
import datetime
import time,json

device = "cuda"

base_model = "Llama-2-7b-chat-hf-qformer/"

prompter = Prompter('alpaca_short')
tokenizer = LlamaTokenizer.from_pretrained(base_model)

model = LlamaForCausalLM.from_pretrained(base_model, device_map="auto", torch_dtype=torch.float32)

config = LoraConfig(
    r=8,
    lora_alpha=16,
    target_modules=["q_proj", "v_proj"],
    lora_dropout=0.0,
    bias="none",
    task_type="CAUSAL_LM",
)

model = get_peft_model(model, config)
temp, top_p, top_k = 0.1, 0.95, 500
# change it to your model path

### Stage 4 ckpt
eval_mdl_path = './stage5_ckpt/pytorch_model.bin'

state_dict = torch.load(eval_mdl_path, map_location='cpu')
msg = model.load_state_dict(state_dict, strict=False)

model.is_parallelizable = True
model.model_parallel = True

# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0  # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2

model.eval()
eval_log = []
cur_time = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
log_save_path = './inference_log/'
if os.path.exists(log_save_path) == False:
    os.mkdir(log_save_path)
log_save_path = log_save_path + cur_time + '.json'

SAMPLE_RATE = 16000
AUDIO_LEN = 1.0

def load_audio(filename):
    waveform, sr = torchaudio.load(filename)
    audio_info = 'Original input audio length {:.2f} seconds, number of channels: {:d}, sampling rate: {:d}.'.format(waveform.shape[1]/sr, waveform.shape[0], sr)
    if sr != 16000:
        waveform = torchaudio.functional.resample(waveform=waveform, orig_freq=sr, new_freq=16000)
        sr = 16000
    waveform = waveform - waveform.mean()
    fbank = torchaudio.compliance.kaldi.fbank(waveform, htk_compat=True, sample_frequency=sr,
                                              use_energy=False, window_type='hanning',
                                              num_mel_bins=128, dither=0.0, frame_shift=10)
    target_length = 1024
    n_frames = fbank.shape[0]
    p = target_length - n_frames
    if p > 0:
        m = torch.nn.ZeroPad2d((0, 0, 0, p))
        fbank = m(fbank)
    elif p < 0:
        fbank = fbank[0:target_length, :]
    # normalize the fbank
    fbank = (fbank + 5.081) / 4.4849
    return fbank, audio_info

@spaces.GPU
def predict(audio_path, question):
    model.to(device)
    print('audio path, ', audio_path)
    begin_time = time.time()

    instruction = question
    prompt = prompter.generate_prompt(instruction, None)
    print('Input prompt: ', prompt)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to(device)

    if audio_path != 'empty':
        cur_audio_input, audio_info = load_audio(audio_path)
        cur_audio_input = cur_audio_input.unsqueeze(0)
        if torch.cuda.is_available() == False:
            pass
        else:
            # cur_audio_input = cur_audio_input.half().to(device)
            cur_audio_input = cur_audio_input.to(device)
    else:
        cur_audio_input = None
        audio_info = 'Audio is not provided, answer pure language question.'

    generation_config = GenerationConfig(
        do_sample=True,
        temperature=0.1,
        top_p=0.95,
        max_new_tokens=400,
        bos_token_id=model.config.bos_token_id,
        eos_token_id=model.config.eos_token_id,
        pad_token_id=model.config.pad_token_id,
        num_return_sequences=1
    )

    # Without streaming
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids.to(device),
            audio_input=cur_audio_input,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=400,
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)[len(prompt)+6:-4] # trim <s> and </s>
    end_time = time.time()
    print(output)
    cur_res = {'audio_id': audio_path, 'input': instruction, 'output': output}
    eval_log.append(cur_res)
    with open(log_save_path, 'w') as outfile:
        json.dump(eval_log, outfile, indent=1)
    print('eclipse time: ', end_time - begin_time, ' seconds.')
    return audio_info, output

link = "https://github.com/Sreyan88/GAMA"
text = "[Github]"
paper_link = "https://sreyan88.github.io/gamaaudio/"
paper_text = "https://arxiv.org/pdf/2406.11768"
demo = gr.Interface(fn=predict,
                    inputs=[gr.Audio(type="filepath"), gr.Textbox(value='Describe the audio in detail', label='Edit the textbox to ask your own questions!')],
                    outputs=[gr.Textbox(label="Audio Meta Information"), gr.Textbox(label="GAMA Output")],
                    cache_examples=True,
                    title="Quick Demo of GAMA-IT",
                    description="GAMA-IT is an instruction-tuned version of GAMA, a novel Large Audio-Language Model that is capable of complex reasoning. The model can understand any given audio (non-speech) and answer any open-ended question about it, including ones that require complex reasoning." + f"<a href='{paper_link}'>{paper_text}</a> " + f"<a href='{link}'>{text}</a> <br>" +
                    "GAMA-IT is authored by members of the GAMMA Lab at the University of Maryland, College Park and Adobe, USA. <br>" +
                    "**GAMA-IT is not an ASR model and has limited ability to recognize the speech content. It primarily focuses on perception and understanding of non-speech sounds.**<br>" +
                    "Input an audio and ask quesions! Audio will be converted to 16kHz and padded or trim to 10 seconds.")
demo.launch()