|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Union |
|
|
|
import tqdm |
|
from filelock import FileLock |
|
|
|
from transformers import ( |
|
BartTokenizer, |
|
BartTokenizerFast, |
|
DataProcessor, |
|
PreTrainedTokenizer, |
|
RobertaTokenizer, |
|
RobertaTokenizerFast, |
|
XLMRobertaTokenizer, |
|
is_tf_available, |
|
is_torch_available, |
|
) |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class InputExample: |
|
""" |
|
A single training/test example for simple sequence classification. |
|
|
|
Args: |
|
guid: Unique id for the example. |
|
text_a: string. The untokenized text of the first sequence. For single |
|
sequence tasks, only this sequence must be specified. |
|
text_b: (Optional) string. The untokenized text of the second sequence. |
|
Only must be specified for sequence pair tasks. |
|
label: (Optional) string. The label of the example. This should be |
|
specified for train and dev examples, but not for test examples. |
|
pairID: (Optional) string. Unique identifier for the pair of sentences. |
|
""" |
|
|
|
guid: str |
|
text_a: str |
|
text_b: Optional[str] = None |
|
label: Optional[str] = None |
|
pairID: Optional[str] = None |
|
|
|
|
|
@dataclass(frozen=True) |
|
class InputFeatures: |
|
""" |
|
A single set of features of data. |
|
Property names are the same names as the corresponding inputs to a model. |
|
|
|
Args: |
|
input_ids: Indices of input sequence tokens in the vocabulary. |
|
attention_mask: Mask to avoid performing attention on padding token indices. |
|
Mask values selected in ``[0, 1]``: |
|
Usually ``1`` for tokens that are NOT MASKED, ``0`` for MASKED (padded) tokens. |
|
token_type_ids: (Optional) Segment token indices to indicate first and second |
|
portions of the inputs. Only some models use them. |
|
label: (Optional) Label corresponding to the input. Int for classification problems, |
|
float for regression problems. |
|
pairID: (Optional) Unique identifier for the pair of sentences. |
|
""" |
|
|
|
input_ids: List[int] |
|
attention_mask: Optional[List[int]] = None |
|
token_type_ids: Optional[List[int]] = None |
|
label: Optional[Union[int, float]] = None |
|
pairID: Optional[int] = None |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
from torch.utils.data import Dataset |
|
|
|
class HansDataset(Dataset): |
|
""" |
|
This will be superseded by a framework-agnostic approach |
|
soon. |
|
""" |
|
|
|
features: List[InputFeatures] |
|
|
|
def __init__( |
|
self, |
|
data_dir: str, |
|
tokenizer: PreTrainedTokenizer, |
|
task: str, |
|
max_seq_length: Optional[int] = None, |
|
overwrite_cache=False, |
|
evaluate: bool = False, |
|
): |
|
processor = hans_processors[task]() |
|
|
|
cached_features_file = os.path.join( |
|
data_dir, |
|
"cached_{}_{}_{}_{}".format( |
|
"dev" if evaluate else "train", |
|
tokenizer.__class__.__name__, |
|
str(max_seq_length), |
|
task, |
|
), |
|
) |
|
label_list = processor.get_labels() |
|
if tokenizer.__class__ in ( |
|
RobertaTokenizer, |
|
RobertaTokenizerFast, |
|
XLMRobertaTokenizer, |
|
BartTokenizer, |
|
BartTokenizerFast, |
|
): |
|
|
|
label_list[1], label_list[2] = label_list[2], label_list[1] |
|
self.label_list = label_list |
|
|
|
|
|
|
|
lock_path = cached_features_file + ".lock" |
|
with FileLock(lock_path): |
|
if os.path.exists(cached_features_file) and not overwrite_cache: |
|
logger.info(f"Loading features from cached file {cached_features_file}") |
|
self.features = torch.load(cached_features_file) |
|
else: |
|
logger.info(f"Creating features from dataset file at {data_dir}") |
|
|
|
examples = ( |
|
processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir) |
|
) |
|
|
|
logger.info("Training examples: %s", len(examples)) |
|
self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer) |
|
logger.info("Saving features into cached file %s", cached_features_file) |
|
torch.save(self.features, cached_features_file) |
|
|
|
def __len__(self): |
|
return len(self.features) |
|
|
|
def __getitem__(self, i) -> InputFeatures: |
|
return self.features[i] |
|
|
|
def get_labels(self): |
|
return self.label_list |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
class TFHansDataset: |
|
""" |
|
This will be superseded by a framework-agnostic approach |
|
soon. |
|
""" |
|
|
|
features: List[InputFeatures] |
|
|
|
def __init__( |
|
self, |
|
data_dir: str, |
|
tokenizer: PreTrainedTokenizer, |
|
task: str, |
|
max_seq_length: Optional[int] = 128, |
|
overwrite_cache=False, |
|
evaluate: bool = False, |
|
): |
|
processor = hans_processors[task]() |
|
label_list = processor.get_labels() |
|
if tokenizer.__class__ in ( |
|
RobertaTokenizer, |
|
RobertaTokenizerFast, |
|
XLMRobertaTokenizer, |
|
BartTokenizer, |
|
BartTokenizerFast, |
|
): |
|
|
|
label_list[1], label_list[2] = label_list[2], label_list[1] |
|
self.label_list = label_list |
|
|
|
examples = processor.get_dev_examples(data_dir) if evaluate else processor.get_train_examples(data_dir) |
|
self.features = hans_convert_examples_to_features(examples, label_list, max_seq_length, tokenizer) |
|
|
|
def gen(): |
|
for ex_index, ex in tqdm.tqdm(enumerate(self.features), desc="convert examples to features"): |
|
if ex_index % 10000 == 0: |
|
logger.info("Writing example %d of %d" % (ex_index, len(examples))) |
|
|
|
yield ( |
|
{ |
|
"example_id": 0, |
|
"input_ids": ex.input_ids, |
|
"attention_mask": ex.attention_mask, |
|
"token_type_ids": ex.token_type_ids, |
|
}, |
|
ex.label, |
|
) |
|
|
|
self.dataset = tf.data.Dataset.from_generator( |
|
gen, |
|
( |
|
{ |
|
"example_id": tf.int32, |
|
"input_ids": tf.int32, |
|
"attention_mask": tf.int32, |
|
"token_type_ids": tf.int32, |
|
}, |
|
tf.int64, |
|
), |
|
( |
|
{ |
|
"example_id": tf.TensorShape([]), |
|
"input_ids": tf.TensorShape([None, None]), |
|
"attention_mask": tf.TensorShape([None, None]), |
|
"token_type_ids": tf.TensorShape([None, None]), |
|
}, |
|
tf.TensorShape([]), |
|
), |
|
) |
|
|
|
def get_dataset(self): |
|
return self.dataset |
|
|
|
def __len__(self): |
|
return len(self.features) |
|
|
|
def __getitem__(self, i) -> InputFeatures: |
|
return self.features[i] |
|
|
|
def get_labels(self): |
|
return self.label_list |
|
|
|
|
|
class HansProcessor(DataProcessor): |
|
"""Processor for the HANS data set.""" |
|
|
|
def get_train_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_train_set.txt")), "train") |
|
|
|
def get_dev_examples(self, data_dir): |
|
"""See base class.""" |
|
return self._create_examples(self._read_tsv(os.path.join(data_dir, "heuristics_evaluation_set.txt")), "dev") |
|
|
|
def get_labels(self): |
|
"""See base class. |
|
Note that we follow the standard three labels for MNLI |
|
(see :class:`~transformers.data.processors.utils.MnliProcessor`) |
|
but the HANS evaluation groups `contradiction` and `neutral` into `non-entailment` (label 0) while |
|
`entailment` is label 1.""" |
|
return ["contradiction", "entailment", "neutral"] |
|
|
|
def _create_examples(self, lines, set_type): |
|
"""Creates examples for the training and dev sets.""" |
|
examples = [] |
|
for i, line in enumerate(lines): |
|
if i == 0: |
|
continue |
|
guid = "%s-%s" % (set_type, line[0]) |
|
text_a = line[5] |
|
text_b = line[6] |
|
pairID = line[7][2:] if line[7].startswith("ex") else line[7] |
|
label = line[0] |
|
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label, pairID=pairID)) |
|
return examples |
|
|
|
|
|
def hans_convert_examples_to_features( |
|
examples: List[InputExample], |
|
label_list: List[str], |
|
max_length: int, |
|
tokenizer: PreTrainedTokenizer, |
|
): |
|
""" |
|
Loads a data file into a list of ``InputFeatures`` |
|
|
|
Args: |
|
examples: List of ``InputExamples`` containing the examples. |
|
label_list: List of labels. Can be obtained from the processor using the ``processor.get_labels()`` method. |
|
max_length: Maximum example length. |
|
tokenizer: Instance of a tokenizer that will tokenize the examples. |
|
|
|
Returns: |
|
A list of task-specific ``InputFeatures`` which can be fed to the model. |
|
|
|
""" |
|
|
|
label_map = {label: i for i, label in enumerate(label_list)} |
|
|
|
features = [] |
|
for ex_index, example in tqdm.tqdm(enumerate(examples), desc="convert examples to features"): |
|
if ex_index % 10000 == 0: |
|
logger.info("Writing example %d" % (ex_index)) |
|
|
|
inputs = tokenizer( |
|
example.text_a, |
|
example.text_b, |
|
add_special_tokens=True, |
|
max_length=max_length, |
|
padding="max_length", |
|
truncation=True, |
|
return_overflowing_tokens=True, |
|
) |
|
|
|
label = label_map[example.label] if example.label in label_map else 0 |
|
|
|
pairID = int(example.pairID) |
|
|
|
features.append(InputFeatures(**inputs, label=label, pairID=pairID)) |
|
|
|
for i, example in enumerate(examples[:5]): |
|
logger.info("*** Example ***") |
|
logger.info(f"guid: {example}") |
|
logger.info(f"features: {features[i]}") |
|
|
|
return features |
|
|
|
|
|
hans_tasks_num_labels = { |
|
"hans": 3, |
|
} |
|
|
|
hans_processors = { |
|
"hans": HansProcessor, |
|
} |
|
|