|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for causal language modeling (GPT-2, GPT-Neo...) |
|
on a text file or a dataset without using HuggingFace Trainer. |
|
|
|
Here is the full list of checkpoints on the hub that can be fine-tuned by this script: |
|
https://huggingface.co/models?filter=text-generation |
|
""" |
|
|
|
|
|
import json |
|
|
|
|
|
import logging |
|
import math |
|
import os |
|
import random |
|
import sys |
|
from dataclasses import dataclass, field |
|
from itertools import chain |
|
from pathlib import Path |
|
from typing import Optional |
|
|
|
import datasets |
|
import tensorflow as tf |
|
from datasets import load_dataset |
|
from sklearn.model_selection import train_test_split |
|
|
|
import transformers |
|
from transformers import ( |
|
CONFIG_MAPPING, |
|
CONFIG_NAME, |
|
TF2_WEIGHTS_NAME, |
|
TF_MODEL_FOR_CAUSAL_LM_MAPPING, |
|
AutoConfig, |
|
AutoTokenizer, |
|
HfArgumentParser, |
|
PushToHubCallback, |
|
TFAutoModelForCausalLM, |
|
TFTrainingArguments, |
|
create_optimizer, |
|
set_seed, |
|
) |
|
from transformers.utils import send_example_telemetry |
|
from transformers.utils.versions import require_version |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/tensorflow/language-modeling/requirements.txt") |
|
MODEL_CONFIG_CLASSES = list(TF_MODEL_FOR_CAUSAL_LM_MAPPING.keys()) |
|
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) |
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch." |
|
) |
|
}, |
|
) |
|
model_type: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, |
|
) |
|
config_overrides: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Override some existing default config settings when a model is trained from scratch. Example: " |
|
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" |
|
) |
|
}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} |
|
) |
|
cache_dir: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, |
|
) |
|
use_fast_tokenizer: bool = field( |
|
default=True, |
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, |
|
) |
|
model_revision: str = field( |
|
default="main", |
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, |
|
) |
|
use_auth_token: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script " |
|
"with private models)." |
|
) |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): |
|
raise ValueError( |
|
"--config_overrides can't be used in combination with --config_name or --model_name_or_path" |
|
) |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
dataset_name: Optional[str] = field( |
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} |
|
) |
|
dataset_config_name: Optional[str] = field( |
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} |
|
) |
|
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."}) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} |
|
) |
|
validation_split_percentage: Optional[int] = field( |
|
default=5, |
|
metadata={ |
|
"help": "The percentage of the train set used as validation set in case there's no validation split" |
|
}, |
|
) |
|
block_size: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"Optional input sequence length after tokenization. " |
|
"The training dataset will be truncated in block of this size for training. " |
|
"Default to the model max input length for single sentence inputs (take into account special tokens)." |
|
) |
|
}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={"help": "The number of processes to use for the preprocessing."}, |
|
) |
|
line_by_line: bool = field( |
|
default=False, |
|
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of training examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": ( |
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this " |
|
"value if set." |
|
) |
|
}, |
|
) |
|
keep_linebreaks: bool = field( |
|
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."} |
|
) |
|
|
|
def __post_init__(self): |
|
if self.dataset_name is None and self.train_file is None and self.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if self.train_file is not None: |
|
extension = self.train_file.split(".")[-1] |
|
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." |
|
if self.validation_file is not None: |
|
extension = self.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." |
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
|
|
send_example_telemetry("run_clm", model_args, data_args, framework="tensorflow") |
|
|
|
|
|
if data_args.dataset_name is None and data_args.train_file is None and data_args.validation_file is None: |
|
raise ValueError("Need either a dataset name or a training/validation file.") |
|
else: |
|
if data_args.train_file is not None: |
|
extension = data_args.train_file.split(".")[-1] |
|
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, json or txt file." |
|
if data_args.validation_file is not None: |
|
extension = data_args.validation_file.split(".")[-1] |
|
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, json or txt file." |
|
|
|
if training_args.output_dir is not None: |
|
training_args.output_dir = Path(training_args.output_dir) |
|
os.makedirs(training_args.output_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
|
checkpoint = None |
|
if len(os.listdir(training_args.output_dir)) > 0 and not training_args.overwrite_output_dir: |
|
config_path = training_args.output_dir / CONFIG_NAME |
|
weights_path = training_args.output_dir / TF2_WEIGHTS_NAME |
|
if config_path.is_file() and weights_path.is_file(): |
|
checkpoint = training_args.output_dir |
|
logger.info( |
|
f"Checkpoint detected, resuming training from checkpoint in {training_args.output_dir}. To avoid this" |
|
" behavior, change the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
) |
|
else: |
|
raise ValueError( |
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
"Use --overwrite_output_dir to continue regardless." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
logger.setLevel(logging.INFO) |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
|
|
|
|
|
|
if training_args.seed is not None: |
|
set_seed(training_args.seed) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if data_args.dataset_name is not None: |
|
|
|
raw_datasets = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
if "validation" not in raw_datasets.keys(): |
|
raw_datasets["validation"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=f"train[:{data_args.validation_split_percentage}%]", |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
raw_datasets["train"] = load_dataset( |
|
data_args.dataset_name, |
|
data_args.dataset_config_name, |
|
split=f"train[{data_args.validation_split_percentage}%:]", |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
) |
|
else: |
|
data_files = {} |
|
dataset_args = {} |
|
if data_args.train_file is not None: |
|
data_files["train"] = data_args.train_file |
|
if data_args.validation_file is not None: |
|
data_files["validation"] = data_args.validation_file |
|
extension = ( |
|
data_args.train_file.split(".")[-1] |
|
if data_args.train_file is not None |
|
else data_args.validation_file.split(".")[-1] |
|
) |
|
if extension == "txt": |
|
extension = "text" |
|
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks |
|
raw_datasets = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
**dataset_args, |
|
) |
|
|
|
if "validation" not in raw_datasets.keys(): |
|
raw_datasets["validation"] = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
split=f"train[:{data_args.validation_split_percentage}%]", |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
**dataset_args, |
|
) |
|
raw_datasets["train"] = load_dataset( |
|
extension, |
|
data_files=data_files, |
|
split=f"train[{data_args.validation_split_percentage}%:]", |
|
cache_dir=model_args.cache_dir, |
|
use_auth_token=True if model_args.use_auth_token else None, |
|
**dataset_args, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if model_args.config_name: |
|
config = AutoConfig.from_pretrained(model_args.config_name) |
|
elif model_args.model_name_or_path: |
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path) |
|
else: |
|
config = CONFIG_MAPPING[model_args.model_type]() |
|
logger.warning("You are instantiating a new config instance from scratch.") |
|
|
|
if model_args.tokenizer_name: |
|
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name) |
|
elif model_args.model_name_or_path: |
|
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path) |
|
else: |
|
raise ValueError( |
|
"You are instantiating a new tokenizer from scratch. This is not supported by this script." |
|
"You can do it from another script, save it, and load it from here, using --tokenizer_name." |
|
) |
|
|
|
|
|
|
|
|
|
column_names = raw_datasets["train"].column_names |
|
text_column_name = "text" if "text" in column_names else column_names[0] |
|
|
|
def tokenize_function(examples): |
|
return tokenizer(examples[text_column_name]) |
|
|
|
tokenized_datasets = raw_datasets.map( |
|
tokenize_function, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
remove_columns=column_names, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc="Running tokenizer on dataset", |
|
) |
|
|
|
if data_args.block_size is None: |
|
block_size = tokenizer.model_max_length |
|
if block_size > 1024: |
|
logger.warning( |
|
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). " |
|
"Picking 1024 instead. You can change that default value by passing --block_size xxx." |
|
) |
|
block_size = 1024 |
|
else: |
|
if data_args.block_size > tokenizer.model_max_length: |
|
logger.warning( |
|
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model" |
|
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}." |
|
) |
|
block_size = min(data_args.block_size, tokenizer.model_max_length) |
|
|
|
|
|
def group_texts(examples): |
|
|
|
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()} |
|
total_length = len(concatenated_examples[list(examples.keys())[0]]) |
|
|
|
|
|
if total_length >= block_size: |
|
total_length = (total_length // block_size) * block_size |
|
|
|
result = { |
|
k: [t[i : i + block_size] for i in range(0, total_length, block_size)] |
|
for k, t in concatenated_examples.items() |
|
} |
|
result["labels"] = result["input_ids"].copy() |
|
return result |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lm_datasets = tokenized_datasets.map( |
|
group_texts, |
|
batched=True, |
|
num_proc=data_args.preprocessing_num_workers, |
|
load_from_cache_file=not data_args.overwrite_cache, |
|
desc=f"Grouping texts in chunks of {block_size}", |
|
) |
|
|
|
train_dataset = lm_datasets["train"] |
|
if data_args.validation_file is not None: |
|
eval_dataset = lm_datasets["validation"] |
|
else: |
|
logger.info( |
|
f"Validation file not found: using {data_args.validation_split_percentage}% of the dataset as validation" |
|
" as provided in data_args" |
|
) |
|
train_indices, val_indices = train_test_split( |
|
list(range(len(train_dataset))), test_size=data_args.validation_split_percentage / 100 |
|
) |
|
|
|
eval_dataset = train_dataset.select(val_indices) |
|
train_dataset = train_dataset.select(train_indices) |
|
|
|
if data_args.max_train_samples is not None: |
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples) |
|
train_dataset = train_dataset.select(range(max_train_samples)) |
|
if data_args.max_eval_samples is not None: |
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) |
|
eval_dataset = eval_dataset.select(range(max_eval_samples)) |
|
|
|
|
|
for index in random.sample(range(len(train_dataset)), min(3, len(train_dataset))): |
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") |
|
|
|
|
|
with training_args.strategy.scope(): |
|
|
|
if checkpoint is not None: |
|
model = TFAutoModelForCausalLM.from_pretrained(checkpoint, config=config) |
|
elif model_args.model_name_or_path: |
|
model = TFAutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, config=config) |
|
else: |
|
logger.info("Training new model from scratch") |
|
model = TFAutoModelForCausalLM.from_config(config) |
|
|
|
|
|
|
|
embeddings = model.get_input_embeddings() |
|
|
|
|
|
|
|
|
|
if hasattr(embeddings, "embeddings"): |
|
embedding_size = embeddings.embeddings.shape[0] |
|
else: |
|
embedding_size = embeddings.weight.shape[0] |
|
if len(tokenizer) > embedding_size: |
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
|
|
|
|
num_replicas = training_args.strategy.num_replicas_in_sync |
|
options = tf.data.Options() |
|
options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tf_train_dataset = model.prepare_tf_dataset( |
|
train_dataset, |
|
shuffle=True, |
|
batch_size=num_replicas * training_args.per_device_train_batch_size, |
|
).with_options(options) |
|
|
|
tf_eval_dataset = model.prepare_tf_dataset( |
|
eval_dataset, |
|
shuffle=False, |
|
batch_size=num_replicas * training_args.per_device_eval_batch_size, |
|
drop_remainder=True, |
|
).with_options(options) |
|
|
|
|
|
|
|
num_train_steps = len(tf_train_dataset) * int(training_args.num_train_epochs) |
|
if training_args.warmup_steps > 0: |
|
num_warmup_steps = training_args.warmup_steps |
|
elif training_args.warmup_ratio > 0: |
|
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio) |
|
else: |
|
num_warmup_steps = 0 |
|
|
|
|
|
optimizer, lr_schedule = create_optimizer( |
|
init_lr=training_args.learning_rate, |
|
num_train_steps=num_train_steps, |
|
num_warmup_steps=num_warmup_steps, |
|
adam_beta1=training_args.adam_beta1, |
|
adam_beta2=training_args.adam_beta2, |
|
adam_epsilon=training_args.adam_epsilon, |
|
weight_decay_rate=training_args.weight_decay, |
|
adam_global_clipnorm=training_args.max_grad_norm, |
|
) |
|
|
|
|
|
model.compile(optimizer=optimizer, jit_compile=training_args.xla) |
|
|
|
|
|
|
|
push_to_hub_model_id = training_args.push_to_hub_model_id |
|
model_name = model_args.model_name_or_path.split("/")[-1] |
|
if not push_to_hub_model_id: |
|
if data_args.dataset_name is not None: |
|
push_to_hub_model_id = f"{model_name}-finetuned-{data_args.dataset_name}" |
|
else: |
|
push_to_hub_model_id = f"{model_name}-finetuned-clm" |
|
|
|
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-generation"} |
|
if data_args.dataset_name is not None: |
|
model_card_kwargs["dataset_tags"] = data_args.dataset_name |
|
if data_args.dataset_config_name is not None: |
|
model_card_kwargs["dataset_args"] = data_args.dataset_config_name |
|
model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" |
|
else: |
|
model_card_kwargs["dataset"] = data_args.dataset_name |
|
|
|
if training_args.push_to_hub: |
|
callbacks = [ |
|
PushToHubCallback( |
|
output_dir=training_args.output_dir, |
|
hub_model_id=push_to_hub_model_id, |
|
hub_token=training_args.push_to_hub_token, |
|
tokenizer=tokenizer, |
|
**model_card_kwargs, |
|
) |
|
] |
|
else: |
|
callbacks = [] |
|
|
|
|
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len(train_dataset)}") |
|
logger.info(f" Num Epochs = {training_args.num_train_epochs}") |
|
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}") |
|
logger.info(f" Total train batch size = {training_args.per_device_train_batch_size * num_replicas}") |
|
|
|
|
|
|
|
|
|
|
|
history = model.fit( |
|
tf_train_dataset, |
|
validation_data=tf_eval_dataset, |
|
epochs=int(training_args.num_train_epochs), |
|
callbacks=callbacks, |
|
) |
|
train_loss = history.history["loss"][-1] |
|
try: |
|
train_perplexity = math.exp(train_loss) |
|
except OverflowError: |
|
train_perplexity = math.inf |
|
logger.info(f" Final train loss: {train_loss:.3f}") |
|
logger.info(f" Final train perplexity: {train_perplexity:.3f}") |
|
validation_loss = history.history["val_loss"][-1] |
|
try: |
|
validation_perplexity = math.exp(validation_loss) |
|
except OverflowError: |
|
validation_perplexity = math.inf |
|
logger.info(f" Final validation loss: {validation_loss:.3f}") |
|
logger.info(f" Final validation perplexity: {validation_perplexity:.3f}") |
|
|
|
if training_args.output_dir is not None: |
|
output_eval_file = os.path.join(training_args.output_dir, "all_results.json") |
|
results_dict = {} |
|
results_dict["train_loss"] = train_loss |
|
results_dict["train_perplexity"] = train_perplexity |
|
results_dict["eval_loss"] = validation_loss |
|
results_dict["eval_perplexity"] = validation_perplexity |
|
with open(output_eval_file, "w") as writer: |
|
writer.write(json.dumps(results_dict)) |
|
|
|
|
|
if training_args.output_dir is not None and not training_args.push_to_hub: |
|
|
|
model.save_pretrained(training_args.output_dir) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|