|
""" |
|
Framework agnostic tests for generate()-related methods. |
|
""" |
|
|
|
import numpy as np |
|
|
|
from transformers import AutoTokenizer |
|
from transformers.testing_utils import slow, torch_device |
|
|
|
|
|
class GenerationIntegrationTestsMixin: |
|
|
|
framework_dependent_parameters = { |
|
"AutoModelForCausalLM": None, |
|
"AutoModelForSpeechSeq2Seq": None, |
|
"AutoModelForSeq2SeqLM": None, |
|
"AutoModelForVision2Seq": None, |
|
"LogitsProcessorList": None, |
|
"MinLengthLogitsProcessor": None, |
|
"create_tensor_fn": None, |
|
"floats_tensor": None, |
|
"return_tensors": None, |
|
"set_seed": None, |
|
} |
|
|
|
def test_validate_generation_inputs(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-t5") |
|
|
|
encoder_input_str = "Hello world" |
|
input_ids = tokenizer(encoder_input_str, return_tensors=return_tensors).input_ids |
|
|
|
|
|
with self.assertRaisesRegex(ValueError, "do_samples"): |
|
model.generate(input_ids, do_samples=True) |
|
|
|
|
|
with self.assertRaisesRegex(ValueError, "foo"): |
|
fake_model_kwargs = {"foo": "bar"} |
|
model.generate(input_ids, **fake_model_kwargs) |
|
|
|
|
|
valid_model_kwargs = {"attention_mask": create_tensor_fn(np.zeros_like(input_ids))} |
|
model.generate(input_ids, **valid_model_kwargs) |
|
|
|
def test_custom_logits_processor(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] |
|
logits_processor_list_cls = self.framework_dependent_parameters["LogitsProcessorList"] |
|
min_length_logits_processor_cls = self.framework_dependent_parameters["MinLengthLogitsProcessor"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
|
|
bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" |
|
bart_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", min_length=1) |
|
input_ids = bart_tokenizer(article, return_tensors=return_tensors).input_ids |
|
|
|
logits_processor = logits_processor_list_cls() |
|
logits_processor.append(min_length_logits_processor_cls(min_length=10, eos_token_id=0)) |
|
|
|
with self.assertRaises(ValueError): |
|
bart_model.generate(input_ids, logits_processor=logits_processor) |
|
|
|
bart_model.config.min_length = None |
|
bart_model.generate(input_ids, logits_processor=logits_processor) |
|
|
|
def test_max_new_tokens_encoder_decoder(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" |
|
bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
|
|
bart_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
input_ids = bart_tokenizer(article, return_tensors=return_tensors).input_ids |
|
if is_pt: |
|
bart_model = bart_model.to(torch_device) |
|
input_ids = input_ids.to(torch_device) |
|
|
|
self.assertEqual(list(input_ids.shape), [1, 29]) |
|
|
|
max_new_tokens = 3 |
|
bart_model.config.max_length = 20 |
|
bart_model.config.eos_token_id = None |
|
|
|
|
|
outputs = bart_model.generate(input_ids, max_new_tokens=max_new_tokens) |
|
|
|
self.assertEqual(list(outputs.shape), [1, 4]) |
|
|
|
|
|
outputs = bart_model.generate(decoder_input_ids=input_ids, max_new_tokens=max_new_tokens) |
|
|
|
self.assertEqual(list(outputs.shape), [1, 32]) |
|
|
|
|
|
outputs = bart_model.generate(max_new_tokens=max_new_tokens + 20) |
|
|
|
|
|
self.assertEqual(list(outputs.shape), [1, 24]) |
|
|
|
def test_max_new_tokens_decoder_only(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
article = """Justin Timberlake.""" |
|
gpt2_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
|
|
gpt2_model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
input_ids = gpt2_tokenizer(article, return_tensors=return_tensors).input_ids |
|
if is_pt: |
|
gpt2_model = gpt2_model.to(torch_device) |
|
input_ids = input_ids.to(torch_device) |
|
|
|
self.assertEqual(list(input_ids.shape), [1, 9]) |
|
|
|
max_new_tokens = 3 |
|
gpt2_model.config.max_length = 20 |
|
|
|
|
|
outputs = gpt2_model.generate(input_ids, max_new_tokens=max_new_tokens) |
|
|
|
|
|
self.assertEqual(list(outputs.shape), [1, 12]) |
|
|
|
|
|
outputs = gpt2_model.generate(max_new_tokens=max_new_tokens + 20) |
|
|
|
|
|
self.assertEqual(list(outputs.shape), [1, 24]) |
|
|
|
def test_encoder_decoder_generate_with_inputs_embeds(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
|
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5) |
|
model.config.eos_token_id = None |
|
input_ids = tokenizer(article, return_tensors=return_tensors).input_ids |
|
|
|
inputs_embeds = model.get_input_embeddings()(input_ids) |
|
|
|
output_sequences = model.generate(inputs_embeds=inputs_embeds) |
|
|
|
|
|
self.assertEqual(output_sequences.shape, (1, 5)) |
|
|
|
def test_transition_scores_greedy_search(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
articles = ["Justin Timberlake", "Michael Phelps"] |
|
tokenizer = AutoTokenizer.from_pretrained("distilgpt2", padding_side="left") |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = model_cls.from_pretrained("distilgpt2") |
|
input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids |
|
if is_pt: |
|
model = model.to(torch_device) |
|
input_ids = input_ids.to(torch_device) |
|
|
|
outputs = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=5, |
|
pad_token_id=tokenizer.eos_token_id, |
|
eos_token_id=None, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
) |
|
|
|
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores) |
|
if is_pt: |
|
transition_scores = transition_scores.cpu().numpy() |
|
|
|
expected_scores = np.array( |
|
[ |
|
[-57.8844, -60.45698, -70.16364, -65.50791, -66.35648], |
|
[-54.417572, -60.216614, -62.661243, -58.621933, -58.298683], |
|
] |
|
) |
|
self.assertTrue(np.allclose(transition_scores, expected_scores, atol=1e-3)) |
|
|
|
def test_transition_scores_greedy_search_normalized(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
articles = ["Justin Timberlake", "Michael Phelps"] |
|
tokenizer = AutoTokenizer.from_pretrained("distilgpt2", padding_side="left") |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = model_cls.from_pretrained("distilgpt2") |
|
input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids |
|
if is_pt: |
|
model = model.to(torch_device) |
|
input_ids = input_ids.to(torch_device) |
|
|
|
outputs = model.generate( |
|
input_ids=input_ids, |
|
max_new_tokens=5, |
|
pad_token_id=tokenizer.eos_token_id, |
|
eos_token_id=None, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
) |
|
|
|
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True) |
|
if is_pt: |
|
transition_scores = transition_scores.cpu().numpy() |
|
|
|
expected_scores = np.array( |
|
[ |
|
[-2.538938, -2.2694316, -2.1580915, -1.572299, -2.6719835], |
|
[-1.8826028, -2.2461371, -1.7556462, -2.9644494, -1.7996008], |
|
] |
|
) |
|
self.assertTrue(np.allclose(transition_scores, expected_scores, atol=1e-3)) |
|
|
|
def test_transition_scores_beam_search_encoder_decoder(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
articles = [ |
|
"Justin Timberlake and Jessica Biel, welcome to parenthood.", |
|
"Michael Phelps is arguably the most decorated Olympian of all time.", |
|
] |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
|
|
model = model_cls.from_pretrained( |
|
"hf-internal-testing/tiny-random-bart", |
|
max_length=10, |
|
num_beams=4, |
|
num_return_sequences=2, |
|
eos_token_id=None, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
length_penalty=0.0, |
|
) |
|
input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids |
|
if is_pt: |
|
model = model.to(torch_device) |
|
input_ids = input_ids.to(torch_device) |
|
|
|
outputs = model.generate(input_ids=input_ids) |
|
|
|
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) |
|
if is_pt: |
|
transition_scores = transition_scores.cpu().numpy() |
|
outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() |
|
|
|
self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) |
|
|
|
def test_transition_scores_beam_search_encoder_decoder_with_eos(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
articles = [ |
|
"Justin Timberlake and Jessica Biel, welcome to parenthood.", |
|
"Michael Phelps is arguably the most decorated Olympian of all time.", |
|
] |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
|
|
model = model_cls.from_pretrained( |
|
"hf-internal-testing/tiny-random-bart", |
|
max_length=10, |
|
num_beams=4, |
|
num_return_sequences=2, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
length_penalty=0.0, |
|
) |
|
input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids |
|
if is_pt: |
|
model = model.to(torch_device) |
|
input_ids = input_ids.to(torch_device) |
|
|
|
outputs = model.generate(input_ids=input_ids) |
|
|
|
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) |
|
if is_pt: |
|
transition_scores = transition_scores.cpu().numpy() |
|
outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() |
|
|
|
self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) |
|
|
|
def test_transition_scores_beam_search_decoder_only(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
articles = [ |
|
"Justin Timberlake", |
|
"Michael Phelps", |
|
] |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = model_cls.from_pretrained( |
|
"hf-internal-testing/tiny-random-gpt2", |
|
max_length=10, |
|
num_beams=4, |
|
num_return_sequences=2, |
|
pad_token_id=tokenizer.eos_token_id, |
|
eos_token_id=None, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
length_penalty=0.0, |
|
) |
|
input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids |
|
if is_pt: |
|
model = model.to(torch_device) |
|
input_ids = input_ids.to(torch_device) |
|
|
|
outputs = model.generate(input_ids=input_ids) |
|
|
|
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) |
|
if is_pt: |
|
transition_scores = transition_scores.cpu().numpy() |
|
outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() |
|
|
|
self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) |
|
|
|
def test_transition_scores_beam_sample_encoder_decoder(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
articles = [ |
|
"Justin Timberlake and Jessica Biel, welcome to parenthood.", |
|
"Michael Phelps is arguably the most decorated Olympian of all time.", |
|
] |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
|
|
model = model_cls.from_pretrained( |
|
"hf-internal-testing/tiny-random-bart", |
|
do_sample=True, |
|
max_length=10, |
|
num_beams=4, |
|
num_return_sequences=2, |
|
eos_token_id=None, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
length_penalty=0.0, |
|
) |
|
input_ids = tokenizer(articles, return_tensors=return_tensors, padding=True).input_ids |
|
if is_pt: |
|
model = model.to(torch_device) |
|
input_ids = input_ids.to(torch_device) |
|
|
|
outputs = model.generate(input_ids=input_ids) |
|
|
|
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) |
|
if is_pt: |
|
transition_scores = transition_scores.cpu().numpy() |
|
outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() |
|
|
|
self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores, atol=1e-3)) |
|
|
|
@slow |
|
def test_transition_scores_early_stopping(self): |
|
|
|
|
|
|
|
model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] |
|
create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
input_ids = create_tensor_fn(2 * [[822, 10, 571, 33, 25, 58, 2625, 10, 27, 141, 3, 9, 307, 239, 6, 1]]) |
|
model = model_cls.from_pretrained("t5-small") |
|
if is_pt: |
|
model = model.to(torch_device) |
|
input_ids = input_ids.to(torch_device) |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
max_length=10, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
forced_eos_token_id=model.config.eos_token_id, |
|
num_beams=4, |
|
do_sample=False, |
|
num_return_sequences=3, |
|
length_penalty=0.0, |
|
) |
|
|
|
transition_scores = model.compute_transition_scores( |
|
sequences=outputs.sequences, scores=outputs.scores, beam_indices=outputs.beam_indices |
|
) |
|
if is_pt: |
|
transition_scores = transition_scores.cpu().numpy() |
|
outputs.sequences_scores = outputs.sequences_scores.cpu().numpy() |
|
|
|
self.assertTrue(np.allclose(np.sum(transition_scores, axis=-1), outputs.sequences_scores)) |
|
|
|
def test_encoder_decoder_generate_attention_mask(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
articles = ["Timberlake", "Jessica Biel, welcome to parenthood among other things"] |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
|
|
|
|
model = model_cls.from_pretrained( |
|
"hf-internal-testing/tiny-random-bart", max_length=50, num_beams=5, num_return_sequences=5 |
|
) |
|
model.config.eos_token_id = None |
|
input_ids = tokenizer(articles[0], return_tensors=return_tensors).input_ids |
|
input_ids_batched = tokenizer(articles, padding=True, return_tensors=return_tensors).input_ids |
|
if is_pt: |
|
model = model.to(torch_device) |
|
input_ids = input_ids.to(torch_device) |
|
input_ids_batched = input_ids_batched.to(torch_device) |
|
|
|
output_sequences_batched = model.generate( |
|
input_ids=input_ids_batched, return_dict_in_generate=True, output_scores=True |
|
) |
|
output_sequences = model.generate(input_ids=input_ids, return_dict_in_generate=True, output_scores=True) |
|
|
|
batched_out = output_sequences_batched.sequences_scores |
|
out = output_sequences.sequences_scores |
|
if is_pt: |
|
batched_out = batched_out.cpu().numpy() |
|
out = out.cpu().numpy() |
|
|
|
diff = np.abs(np.sum(batched_out[:5]) - np.sum(out)) |
|
self.assertTrue(diff < 1e-4) |
|
|
|
def test_generate_input_ids_as_kwarg(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
article = """I need input_ids to generate""" |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=15) |
|
input_ids = tokenizer(article, return_tensors=return_tensors).input_ids |
|
if is_pt: |
|
model = model.to(torch_device) |
|
input_ids = input_ids.to(torch_device) |
|
|
|
output_sequences_kwargs = model.generate(input_ids=input_ids) |
|
output_sequences = model.generate(input_ids) |
|
if is_pt: |
|
output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() |
|
output_sequences = output_sequences.cpu().numpy() |
|
|
|
self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) |
|
self.assertEqual(output_sequences.shape, (1, 15)) |
|
|
|
def test_generate_input_ids_as_encoder_kwarg(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=5) |
|
model.config.eos_token_id = None |
|
input_ids = tokenizer(article, return_tensors=return_tensors).input_ids |
|
if is_pt: |
|
model = model.to(torch_device) |
|
input_ids = input_ids.to(torch_device) |
|
|
|
output_sequences_kwargs = model.generate(input_ids=input_ids) |
|
output_sequences = model.generate(input_ids) |
|
if is_pt: |
|
output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() |
|
output_sequences = output_sequences.cpu().numpy() |
|
|
|
self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) |
|
self.assertEqual(output_sequences.shape, (1, 5)) |
|
|
|
def test_generate_inputs_and_encoder_kwargs(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
|
|
article = """I need input_ids to generate""" |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2", max_length=10) |
|
input_ids = tokenizer(article, return_tensors=return_tensors).input_ids |
|
with self.assertRaises(ValueError): |
|
model.generate(input_ids, input_ids=input_ids) |
|
|
|
def test_generate_too_many_encoder_kwargs(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForSeq2SeqLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
|
|
article = """I need input_ids to generate""" |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-bart", max_length=10) |
|
input_ids = tokenizer(article, return_tensors=return_tensors).input_ids |
|
with self.assertRaises(ValueError): |
|
model.generate(input_ids=input_ids, inputs_embeds=input_ids) |
|
|
|
def test_generate_input_features_as_encoder_kwarg(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForSpeechSeq2Seq"] |
|
floats_tensor = self.framework_dependent_parameters["floats_tensor"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
input_features = floats_tensor((3, 80, 60)) |
|
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-WhisperForConditionalGeneration") |
|
if is_pt: |
|
input_features.to(torch_device) |
|
model = model.to(torch_device) |
|
|
|
output_sequences_kwargs = model.generate(input_features=input_features, max_length=5) |
|
output_sequences = model.generate(input_features, max_length=5) |
|
if is_pt: |
|
output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() |
|
output_sequences = output_sequences.cpu().numpy() |
|
|
|
self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) |
|
self.assertEqual(output_sequences.shape, (3, 5)) |
|
|
|
def test_generate_pixel_values_as_encoder_kwarg(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForVision2Seq"] |
|
floats_tensor = self.framework_dependent_parameters["floats_tensor"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
pixel_values = floats_tensor((2, 3, 30, 30)) |
|
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-VisionEncoderDecoderModel-vit-gpt2") |
|
model.config.decoder.eos_token_id = None |
|
if is_pt: |
|
pixel_values = pixel_values.to(torch_device) |
|
model = model.to(torch_device) |
|
|
|
output_sequences_kwargs = model.generate(pixel_values=pixel_values, max_length=5) |
|
output_sequences = model.generate(pixel_values, max_length=5) |
|
if is_pt: |
|
output_sequences_kwargs = output_sequences_kwargs.cpu().numpy() |
|
output_sequences = output_sequences.cpu().numpy() |
|
|
|
self.assertTrue(np.array_equal(output_sequences, output_sequences_kwargs)) |
|
self.assertEqual(output_sequences.shape, (2, 5)) |
|
|
|
def test_generate_encoder_outputs_attention_mask(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForSpeechSeq2Seq"] |
|
floats_tensor = self.framework_dependent_parameters["floats_tensor"] |
|
create_tensor_fn = self.framework_dependent_parameters["create_tensor_fn"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
input_features = floats_tensor((3, 80, 60)) |
|
attention_mask = create_tensor_fn(np.ones(input_features.shape)) |
|
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-WhisperForConditionalGeneration") |
|
if is_pt: |
|
input_features = input_features.to(torch_device) |
|
attention_mask = attention_mask.to(torch_device) |
|
model = model.to(torch_device) |
|
|
|
encoder = model.get_encoder() |
|
encoder_outputs = encoder(input_features) |
|
|
|
output_sequences_no_mask = model.generate(encoder_outputs=encoder_outputs) |
|
output_sequences_with_mask = model.generate(encoder_outputs=encoder_outputs, attention_mask=attention_mask) |
|
if is_pt: |
|
output_sequences_no_mask = output_sequences_no_mask.cpu().numpy() |
|
output_sequences_with_mask = output_sequences_with_mask.cpu().numpy() |
|
|
|
self.assertTrue(np.array_equal(output_sequences_no_mask, output_sequences_with_mask)) |
|
|
|
def test_eos_token_id_int_and_list_greedy_search(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
generation_kwargs = { |
|
"do_sample": False, |
|
"num_beams": 1, |
|
} |
|
expectation = 13 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
text = """Hello, my dog is cute and""" |
|
tokens = tokenizer(text, return_tensors=return_tensors) |
|
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
if is_pt: |
|
model = model.to(torch_device) |
|
tokens = tokens.to(torch_device) |
|
|
|
eos_token_id = 873 |
|
generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) |
|
self.assertTrue(expectation == len(generated_tokens[0])) |
|
|
|
eos_token_id = [873, 198] |
|
generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) |
|
self.assertTrue(expectation == len(generated_tokens[0])) |
|
|
|
def test_eos_token_id_int_and_list_contrastive_search(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
generation_kwargs = { |
|
"do_sample": False, |
|
"num_beams": 1, |
|
"penalty_alpha": 0.6, |
|
"top_k": 4, |
|
} |
|
expectation = 17 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
text = """Hello, my dog is cute and""" |
|
tokens = tokenizer(text, return_tensors=return_tensors) |
|
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
if is_pt: |
|
model = model.to(torch_device) |
|
tokens = tokens.to(torch_device) |
|
|
|
eos_token_id = 225 |
|
generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) |
|
self.assertTrue(expectation == len(generated_tokens[0])) |
|
|
|
eos_token_id = [225, 198] |
|
generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) |
|
self.assertTrue(expectation == len(generated_tokens[0])) |
|
|
|
def test_eos_token_id_int_and_list_beam_search(self): |
|
model_cls = self.framework_dependent_parameters["AutoModelForCausalLM"] |
|
return_tensors = self.framework_dependent_parameters["return_tensors"] |
|
is_pt = not model_cls.__name__.startswith("TF") |
|
|
|
generation_kwargs = { |
|
"do_sample": False, |
|
"num_beams": 3, |
|
} |
|
expectation = 13 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
text = """Hello, my dog is cute and""" |
|
tokens = tokenizer(text, return_tensors=return_tensors) |
|
model = model_cls.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
if is_pt: |
|
model = model.to(torch_device) |
|
tokens = tokens.to(torch_device) |
|
|
|
eos_token_id = 873 |
|
generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) |
|
unpadded_correct_condition = expectation == len(generated_tokens[0]) |
|
padded_correct_condition = expectation < len(generated_tokens[0]) and all( |
|
[token == model.config.pad_token_id for token in generated_tokens[0][expectation:]] |
|
) |
|
self.assertTrue(unpadded_correct_condition or padded_correct_condition) |
|
|
|
eos_token_id = [873, 198] |
|
generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) |
|
unpadded_correct_condition = expectation == len(generated_tokens[0]) |
|
padded_correct_condition = expectation < len(generated_tokens[0]) and all( |
|
[token == model.config.pad_token_id for token in generated_tokens[0][expectation:]] |
|
) |
|
self.assertTrue(unpadded_correct_condition or padded_correct_condition) |
|
|