|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from transformers import is_torch_available, pipeline |
|
from transformers.testing_utils import require_torch, slow, torch_device |
|
|
|
from ..test_modeling_common import floats_tensor, ids_tensor |
|
from .test_framework_agnostic import GenerationIntegrationTestsMixin |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoModelForSeq2SeqLM, |
|
AutoModelForSpeechSeq2Seq, |
|
AutoModelForVision2Seq, |
|
AutoTokenizer, |
|
BartForConditionalGeneration, |
|
BartTokenizer, |
|
GPT2LMHeadModel, |
|
GPT2Tokenizer, |
|
ImageGPTForCausalImageModeling, |
|
SpeechEncoderDecoderModel, |
|
top_k_top_p_filtering, |
|
) |
|
from transformers.generation import ( |
|
BeamSampleDecoderOnlyOutput, |
|
BeamSampleEncoderDecoderOutput, |
|
BeamSearchDecoderOnlyOutput, |
|
BeamSearchEncoderDecoderOutput, |
|
BeamSearchScorer, |
|
ConstrainedBeamSearchScorer, |
|
DisjunctiveConstraint, |
|
ForcedBOSTokenLogitsProcessor, |
|
ForcedEOSTokenLogitsProcessor, |
|
GreedySearchDecoderOnlyOutput, |
|
GreedySearchEncoderDecoderOutput, |
|
HammingDiversityLogitsProcessor, |
|
InfNanRemoveLogitsProcessor, |
|
LogitsProcessorList, |
|
MaxLengthCriteria, |
|
MinLengthLogitsProcessor, |
|
NoBadWordsLogitsProcessor, |
|
NoRepeatNGramLogitsProcessor, |
|
PhrasalConstraint, |
|
RepetitionPenaltyLogitsProcessor, |
|
SampleDecoderOnlyOutput, |
|
SampleEncoderDecoderOutput, |
|
StoppingCriteria, |
|
StoppingCriteriaList, |
|
TemperatureLogitsWarper, |
|
TopKLogitsWarper, |
|
TopPLogitsWarper, |
|
) |
|
|
|
|
|
class GenerationTesterMixin: |
|
model_tester = None |
|
all_generative_model_classes = () |
|
input_name = "input_ids" |
|
|
|
def _get_input_ids_and_config(self): |
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() |
|
input_ids = inputs_dict[self.input_name] |
|
|
|
|
|
max_batch_size = 2 |
|
sequence_length = input_ids.shape[-1] // 2 |
|
input_ids = input_ids[:max_batch_size, :sequence_length] |
|
|
|
|
|
max_length = input_ids.shape[-1] + 3 |
|
if config.eos_token_id is not None and config.pad_token_id is None: |
|
|
|
if isinstance(config.eos_token_id, int): |
|
config.eos_token_id = [config.eos_token_id] |
|
config.pad_token_id = config.eos_token_id[0] |
|
|
|
if "transfoxl" in config.__class__.__name__.lower(): |
|
attention_mask = None |
|
else: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.long)[:max_batch_size, :sequence_length] |
|
|
|
return config, input_ids, attention_mask, max_length |
|
|
|
@staticmethod |
|
def _get_logits_processor_and_kwargs( |
|
input_length, |
|
eos_token_id, |
|
forced_bos_token_id=None, |
|
forced_eos_token_id=None, |
|
max_length=None, |
|
diversity_penalty=None, |
|
): |
|
process_kwargs = { |
|
"min_length": input_length + 1 if max_length is None else max_length - 1, |
|
"bad_words_ids": [[1, 0]], |
|
"no_repeat_ngram_size": 2, |
|
"repetition_penalty": 1.2, |
|
} |
|
logits_processor = LogitsProcessorList( |
|
( |
|
[ |
|
HammingDiversityLogitsProcessor(diversity_penalty, num_beams=2, num_beam_groups=2), |
|
] |
|
if diversity_penalty is not None |
|
else [] |
|
) |
|
+ ( |
|
[ |
|
MinLengthLogitsProcessor(process_kwargs["min_length"], eos_token_id), |
|
] |
|
if eos_token_id is not None |
|
else [] |
|
) |
|
+ ( |
|
[ |
|
ForcedBOSTokenLogitsProcessor(forced_bos_token_id), |
|
] |
|
if forced_bos_token_id is not None |
|
else [] |
|
) |
|
+ ( |
|
[ForcedEOSTokenLogitsProcessor(max_length, forced_eos_token_id)] |
|
if forced_eos_token_id is not None |
|
else [] |
|
) |
|
+ [ |
|
NoBadWordsLogitsProcessor(process_kwargs["bad_words_ids"], eos_token_id), |
|
NoRepeatNGramLogitsProcessor(process_kwargs["no_repeat_ngram_size"]), |
|
RepetitionPenaltyLogitsProcessor(process_kwargs["repetition_penalty"]), |
|
] |
|
) |
|
return process_kwargs, logits_processor |
|
|
|
@staticmethod |
|
def _get_warper_and_kwargs(num_beams): |
|
warp_kwargs = {"top_k": 10, "top_p": 0.7, "temperature": 0.7} |
|
logits_warper = LogitsProcessorList( |
|
[ |
|
TemperatureLogitsWarper(warp_kwargs["temperature"]), |
|
TopKLogitsWarper(top_k=warp_kwargs["top_k"], min_tokens_to_keep=(2 if num_beams > 1 else 1)), |
|
TopPLogitsWarper(top_p=warp_kwargs["top_p"], min_tokens_to_keep=(2 if num_beams > 1 else 1)), |
|
] |
|
) |
|
return warp_kwargs, logits_warper |
|
|
|
@staticmethod |
|
def _get_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1): |
|
beam_kwargs = { |
|
"early_stopping": False, |
|
"length_penalty": 2.0, |
|
"num_beams": 2, |
|
"num_return_sequences": num_return_sequences, |
|
} |
|
beam_scorer = BeamSearchScorer( |
|
batch_size=batch_size, |
|
num_beams=beam_kwargs["num_beams"], |
|
device=torch_device, |
|
length_penalty=beam_kwargs["length_penalty"], |
|
do_early_stopping=beam_kwargs["early_stopping"], |
|
num_beam_hyps_to_keep=num_return_sequences, |
|
) |
|
return beam_kwargs, beam_scorer |
|
|
|
@staticmethod |
|
def _get_diverse_beam_scorer_and_kwargs(batch_size, max_length, num_return_sequences=1): |
|
beam_kwargs = { |
|
"early_stopping": False, |
|
"length_penalty": 2.0, |
|
"num_beams": 2, |
|
"num_return_sequences": num_return_sequences, |
|
"num_beam_groups": 2, |
|
"diversity_penalty": 2.0, |
|
} |
|
beam_scorer = BeamSearchScorer( |
|
batch_size=batch_size, |
|
num_beams=beam_kwargs["num_beams"], |
|
device=torch_device, |
|
length_penalty=beam_kwargs["length_penalty"], |
|
do_early_stopping=beam_kwargs["early_stopping"], |
|
num_beam_hyps_to_keep=num_return_sequences, |
|
num_beam_groups=beam_kwargs["num_beam_groups"], |
|
) |
|
return beam_kwargs, beam_scorer |
|
|
|
@staticmethod |
|
def _get_constrained_beam_scorer_and_kwargs(batch_size, max_length, constraints, num_return_sequences=1): |
|
beam_kwargs = { |
|
"early_stopping": False, |
|
"length_penalty": 2.0, |
|
"num_beams": num_return_sequences * 4, |
|
"num_return_sequences": num_return_sequences, |
|
} |
|
beam_scorer = ConstrainedBeamSearchScorer( |
|
batch_size=batch_size, |
|
constraints=constraints, |
|
num_beams=beam_kwargs["num_beams"], |
|
device=torch_device, |
|
length_penalty=beam_kwargs["length_penalty"], |
|
do_early_stopping=beam_kwargs["early_stopping"], |
|
num_beam_hyps_to_keep=num_return_sequences, |
|
) |
|
return beam_kwargs, beam_scorer |
|
|
|
@staticmethod |
|
def _get_encoder_outputs( |
|
model, input_ids, attention_mask, output_attentions=None, output_hidden_states=None, num_interleave=1 |
|
): |
|
encoder = model.get_encoder() |
|
encoder_outputs = encoder( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.repeat_interleave( |
|
num_interleave, dim=0 |
|
) |
|
input_ids = torch.zeros_like(input_ids[:, :1]) + model._get_decoder_start_token_id() |
|
attention_mask = None |
|
return encoder_outputs, input_ids, attention_mask |
|
|
|
def _greedy_generate( |
|
self, |
|
model, |
|
input_ids, |
|
attention_mask, |
|
max_length, |
|
output_scores=False, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict_in_generate=False, |
|
): |
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( |
|
input_ids.shape[-1], |
|
eos_token_id=model.config.eos_token_id, |
|
forced_bos_token_id=model.config.forced_bos_token_id, |
|
forced_eos_token_id=model.config.forced_eos_token_id, |
|
max_length=max_length, |
|
) |
|
|
|
kwargs = {} |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_generate = model.generate( |
|
input_ids, |
|
do_sample=False, |
|
num_beams=1, |
|
max_length=max_length, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_scores=output_scores, |
|
return_dict_in_generate=return_dict_in_generate, |
|
remove_invalid_values=True, |
|
**logits_process_kwargs, |
|
**model_kwargs, |
|
) |
|
|
|
if model.config.is_encoder_decoder: |
|
encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs( |
|
model, |
|
input_ids, |
|
attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
kwargs["encoder_outputs"] = encoder_outputs |
|
|
|
with torch.no_grad(): |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_greedy = model.greedy_search( |
|
input_ids, |
|
max_length=max_length, |
|
logits_processor=logits_processor, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_scores=output_scores, |
|
return_dict_in_generate=return_dict_in_generate, |
|
**kwargs, |
|
**model_kwargs, |
|
) |
|
return output_greedy, output_generate |
|
|
|
def _sample_generate( |
|
self, |
|
model, |
|
input_ids, |
|
attention_mask, |
|
max_length, |
|
num_return_sequences, |
|
logits_processor, |
|
logits_warper, |
|
logits_warper_kwargs, |
|
process_kwargs, |
|
output_scores=False, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict_in_generate=False, |
|
): |
|
torch.manual_seed(0) |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_generate = model.generate( |
|
input_ids, |
|
do_sample=True, |
|
num_beams=1, |
|
max_length=max_length, |
|
num_return_sequences=num_return_sequences, |
|
output_scores=output_scores, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict_in_generate=return_dict_in_generate, |
|
remove_invalid_values=True, |
|
**logits_warper_kwargs, |
|
**process_kwargs, |
|
**model_kwargs, |
|
) |
|
|
|
torch.manual_seed(0) |
|
kwargs = {} |
|
if model.config.is_encoder_decoder: |
|
encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs( |
|
model, |
|
input_ids, |
|
attention_mask, |
|
num_interleave=num_return_sequences, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
kwargs["encoder_outputs"] = encoder_outputs |
|
elif attention_mask is not None: |
|
attention_mask = attention_mask.repeat_interleave(num_return_sequences, dim=0) |
|
|
|
|
|
logits_processor.append(InfNanRemoveLogitsProcessor()) |
|
|
|
with torch.no_grad(): |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_sample = model.sample( |
|
input_ids.repeat_interleave(num_return_sequences, dim=0), |
|
max_length=max_length, |
|
logits_processor=logits_processor, |
|
logits_warper=logits_warper, |
|
output_scores=output_scores, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict_in_generate=return_dict_in_generate, |
|
**kwargs, |
|
**model_kwargs, |
|
) |
|
|
|
return output_sample, output_generate |
|
|
|
def _beam_search_generate( |
|
self, |
|
model, |
|
input_ids, |
|
attention_mask, |
|
max_length, |
|
beam_scorer, |
|
beam_kwargs, |
|
logits_processor, |
|
logits_process_kwargs, |
|
output_scores=False, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict_in_generate=False, |
|
): |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_generate = model.generate( |
|
input_ids, |
|
do_sample=False, |
|
max_length=max_length, |
|
output_scores=output_scores, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict_in_generate=return_dict_in_generate, |
|
remove_invalid_values=True, |
|
**beam_kwargs, |
|
**logits_process_kwargs, |
|
**model_kwargs, |
|
) |
|
|
|
|
|
kwargs = {} |
|
if model.config.is_encoder_decoder: |
|
encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs( |
|
model, |
|
input_ids, |
|
attention_mask, |
|
num_interleave=beam_scorer.num_beams, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
kwargs["encoder_outputs"] = encoder_outputs |
|
elif attention_mask is not None: |
|
attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0) |
|
|
|
with torch.no_grad(): |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_beam_search = model.beam_search( |
|
input_ids.repeat_interleave(beam_scorer.num_beams, dim=0), |
|
beam_scorer, |
|
max_length=max_length, |
|
logits_processor=logits_processor, |
|
output_scores=output_scores, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict_in_generate=return_dict_in_generate, |
|
**kwargs, |
|
**model_kwargs, |
|
) |
|
return output_generate, output_beam_search |
|
|
|
def _beam_sample_generate( |
|
self, |
|
model, |
|
input_ids, |
|
attention_mask, |
|
max_length, |
|
num_return_sequences, |
|
beam_scorer, |
|
beam_kwargs, |
|
logits_warper, |
|
logits_warper_kwargs, |
|
output_scores=False, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict_in_generate=False, |
|
): |
|
torch.manual_seed(0) |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_generate = model.generate( |
|
input_ids, |
|
do_sample=True, |
|
max_length=max_length, |
|
output_scores=output_scores, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict_in_generate=return_dict_in_generate, |
|
remove_invalid_values=True, |
|
**beam_kwargs, |
|
**logits_warper_kwargs, |
|
**model_kwargs, |
|
) |
|
|
|
kwargs = {} |
|
if model.config.is_encoder_decoder: |
|
encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs( |
|
model, |
|
input_ids, |
|
attention_mask, |
|
num_interleave=beam_scorer.num_beams * num_return_sequences, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
kwargs["encoder_outputs"] = encoder_outputs |
|
elif attention_mask is not None: |
|
attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0) |
|
|
|
|
|
logits_processor = LogitsProcessorList() |
|
logits_processor.append(InfNanRemoveLogitsProcessor()) |
|
|
|
torch.manual_seed(0) |
|
with torch.no_grad(): |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_beam_sample = model.beam_sample( |
|
input_ids.repeat_interleave(beam_scorer.num_beams * num_return_sequences, dim=0), |
|
beam_scorer, |
|
max_length=max_length, |
|
logits_warper=logits_warper, |
|
logits_processor=logits_processor, |
|
output_scores=output_scores, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict_in_generate=return_dict_in_generate, |
|
**kwargs, |
|
**model_kwargs, |
|
) |
|
|
|
return output_generate, output_beam_sample |
|
|
|
def _group_beam_search_generate( |
|
self, |
|
model, |
|
input_ids, |
|
attention_mask, |
|
max_length, |
|
beam_scorer, |
|
beam_kwargs, |
|
logits_processor, |
|
logits_process_kwargs, |
|
output_scores=False, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict_in_generate=False, |
|
): |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_generate = model.generate( |
|
input_ids, |
|
do_sample=False, |
|
max_length=max_length, |
|
output_scores=output_scores, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict_in_generate=return_dict_in_generate, |
|
remove_invalid_values=True, |
|
**beam_kwargs, |
|
**logits_process_kwargs, |
|
**model_kwargs, |
|
) |
|
|
|
|
|
kwargs = {} |
|
if model.config.is_encoder_decoder: |
|
encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs( |
|
model, |
|
input_ids, |
|
attention_mask, |
|
num_interleave=beam_scorer.num_beams, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
kwargs["encoder_outputs"] = encoder_outputs |
|
elif attention_mask is not None: |
|
attention_mask = attention_mask.repeat_interleave(beam_scorer.num_beams, dim=0) |
|
|
|
with torch.no_grad(): |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_group_beam_search = model.group_beam_search( |
|
input_ids.repeat_interleave(beam_scorer.num_beams, dim=0), |
|
beam_scorer, |
|
max_length=max_length, |
|
logits_processor=logits_processor, |
|
output_scores=output_scores, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict_in_generate=return_dict_in_generate, |
|
**kwargs, |
|
**model_kwargs, |
|
) |
|
return output_generate, output_group_beam_search |
|
|
|
def _constrained_beam_search_generate( |
|
self, |
|
model, |
|
input_ids, |
|
attention_mask, |
|
max_length, |
|
constrained_beam_scorer, |
|
constraints, |
|
beam_kwargs, |
|
logits_processor, |
|
logits_process_kwargs, |
|
output_scores=False, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict_in_generate=False, |
|
): |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_generate = model.generate( |
|
input_ids, |
|
do_sample=False, |
|
max_length=max_length, |
|
output_scores=output_scores, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict_in_generate=return_dict_in_generate, |
|
remove_invalid_values=True, |
|
constraints=constraints, |
|
**beam_kwargs, |
|
**logits_process_kwargs, |
|
**model_kwargs, |
|
) |
|
|
|
|
|
kwargs = {} |
|
if model.config.is_encoder_decoder: |
|
encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs( |
|
model, |
|
input_ids, |
|
attention_mask, |
|
num_interleave=constrained_beam_scorer.num_beams, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
kwargs["encoder_outputs"] = encoder_outputs |
|
elif attention_mask is not None: |
|
attention_mask = attention_mask.repeat_interleave(constrained_beam_scorer.num_beams, dim=0) |
|
|
|
with torch.no_grad(): |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_group_beam_search = model.constrained_beam_search( |
|
input_ids.repeat_interleave(constrained_beam_scorer.num_beams, dim=0), |
|
constrained_beam_scorer, |
|
max_length=max_length, |
|
logits_processor=logits_processor, |
|
output_scores=output_scores, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict_in_generate=return_dict_in_generate, |
|
**kwargs, |
|
**model_kwargs, |
|
) |
|
return output_generate, output_group_beam_search |
|
|
|
def _contrastive_generate( |
|
self, |
|
model, |
|
input_ids, |
|
attention_mask, |
|
max_length, |
|
output_scores=False, |
|
output_attentions=False, |
|
output_hidden_states=False, |
|
return_dict_in_generate=False, |
|
): |
|
contrastive_search_kwargs = { |
|
"penalty_alpha": 0.6, |
|
"top_k": 5, |
|
} |
|
|
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( |
|
input_ids.shape[-1], |
|
eos_token_id=model.config.eos_token_id, |
|
forced_bos_token_id=model.config.forced_bos_token_id, |
|
forced_eos_token_id=model.config.forced_eos_token_id, |
|
max_length=max_length, |
|
) |
|
|
|
kwargs = {} |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
output_generate = model.generate( |
|
input_ids, |
|
do_sample=False, |
|
num_beams=1, |
|
max_length=max_length, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_scores=output_scores, |
|
return_dict_in_generate=return_dict_in_generate, |
|
remove_invalid_values=True, |
|
**logits_process_kwargs, |
|
**model_kwargs, |
|
**contrastive_search_kwargs, |
|
) |
|
|
|
if model.config.is_encoder_decoder: |
|
encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs( |
|
model, |
|
input_ids, |
|
attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
kwargs["encoder_outputs"] = encoder_outputs |
|
|
|
with torch.no_grad(): |
|
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {} |
|
stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)]) |
|
output_contrastive = model.contrastive_search( |
|
input_ids, |
|
stopping_criteria=stopping_criteria, |
|
logits_processor=logits_processor, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_scores=output_scores, |
|
return_dict_in_generate=return_dict_in_generate, |
|
**kwargs, |
|
**model_kwargs, |
|
**contrastive_search_kwargs, |
|
) |
|
return output_contrastive, output_generate |
|
|
|
def test_greedy_generate(self): |
|
|
|
for model_class in self.all_generative_model_classes: |
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
model = model_class(config).to(torch_device).eval() |
|
output_greedy, output_generate = self._greedy_generate( |
|
model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length |
|
) |
|
self.assertListEqual(output_greedy.tolist(), output_generate.tolist()) |
|
|
|
def test_greedy_generate_dict_outputs(self): |
|
for model_class in self.all_generative_model_classes: |
|
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
config.use_cache = False |
|
model = model_class(config).to(torch_device).eval() |
|
output_greedy, output_generate = self._greedy_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
|
|
if model.config.is_encoder_decoder: |
|
self.assertIsInstance(output_greedy, GreedySearchEncoderDecoderOutput) |
|
self.assertIsInstance(output_generate, GreedySearchEncoderDecoderOutput) |
|
else: |
|
self.assertIsInstance(output_greedy, GreedySearchDecoderOnlyOutput) |
|
self.assertIsInstance(output_generate, GreedySearchDecoderOnlyOutput) |
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist()) |
|
|
|
for output in (output_greedy, output_generate): |
|
self._check_outputs(output, input_ids, model.config) |
|
|
|
def test_greedy_generate_dict_outputs_use_cache(self): |
|
for model_class in self.all_generative_model_classes: |
|
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
if not hasattr(config, "use_cache"): |
|
|
|
return |
|
|
|
config.use_cache = True |
|
config.is_decoder = True |
|
model = model_class(config).to(torch_device).eval() |
|
output_greedy, output_generate = self._greedy_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_greedy.sequences.tolist()) |
|
|
|
for output in (output_greedy, output_generate): |
|
self._check_outputs(output, input_ids, model.config, use_cache=True) |
|
|
|
def test_sample_generate(self): |
|
for model_class in self.all_generative_model_classes: |
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
model = model_class(config).to(torch_device).eval() |
|
|
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
|
|
process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( |
|
input_ids.shape[-1], |
|
model.config.eos_token_id, |
|
forced_bos_token_id=model.config.forced_bos_token_id, |
|
forced_eos_token_id=model.config.forced_eos_token_id, |
|
max_length=max_length, |
|
) |
|
logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=2) |
|
|
|
|
|
output_sample, output_generate = self._sample_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
num_return_sequences=1, |
|
logits_processor=logits_processor, |
|
logits_warper=logits_warper, |
|
logits_warper_kwargs=logits_warper_kwargs, |
|
process_kwargs=process_kwargs, |
|
) |
|
self.assertListEqual(output_sample.tolist(), output_generate.tolist()) |
|
|
|
|
|
output_sample, output_generate = self._sample_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
num_return_sequences=3, |
|
logits_processor=logits_processor, |
|
logits_warper=logits_warper, |
|
logits_warper_kwargs=logits_warper_kwargs, |
|
process_kwargs=process_kwargs, |
|
) |
|
self.assertListEqual(output_sample.tolist(), output_generate.tolist()) |
|
|
|
def test_sample_generate_dict_output(self): |
|
for model_class in self.all_generative_model_classes: |
|
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
config.use_cache = False |
|
model = model_class(config).to(torch_device).eval() |
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
|
|
process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( |
|
input_ids.shape[-1], |
|
model.config.eos_token_id, |
|
forced_bos_token_id=model.config.forced_bos_token_id, |
|
forced_eos_token_id=model.config.forced_eos_token_id, |
|
max_length=max_length, |
|
) |
|
logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1) |
|
|
|
output_sample, output_generate = self._sample_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
num_return_sequences=2, |
|
logits_processor=logits_processor, |
|
logits_warper=logits_warper, |
|
logits_warper_kwargs=logits_warper_kwargs, |
|
process_kwargs=process_kwargs, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
|
|
if model.config.is_encoder_decoder: |
|
self.assertIsInstance(output_sample, SampleEncoderDecoderOutput) |
|
self.assertIsInstance(output_generate, SampleEncoderDecoderOutput) |
|
else: |
|
self.assertIsInstance(output_sample, SampleDecoderOnlyOutput) |
|
self.assertIsInstance(output_generate, SampleDecoderOnlyOutput) |
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_sample.sequences.tolist()) |
|
|
|
for output in (output_sample, output_generate): |
|
self._check_outputs(output, input_ids, model.config, num_return_sequences=2) |
|
|
|
def test_beam_search_generate(self): |
|
for model_class in self.all_generative_model_classes: |
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
|
|
|
|
|
|
config.eos_token_id = None |
|
config.forced_eos_token_id = None |
|
|
|
model = model_class(config).to(torch_device).eval() |
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( |
|
input_ids.shape[-1], |
|
config.eos_token_id, |
|
config.forced_bos_token_id, |
|
config.forced_eos_token_id, |
|
max_length, |
|
) |
|
beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length) |
|
|
|
|
|
output_generate, output_beam_search = self._beam_search_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
beam_scorer=beam_scorer, |
|
beam_kwargs=beam_kwargs, |
|
logits_process_kwargs=logits_process_kwargs, |
|
logits_processor=logits_processor, |
|
) |
|
|
|
self.assertListEqual(output_generate.tolist(), output_beam_search.tolist()) |
|
|
|
|
|
num_return_sequences = 2 |
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs( |
|
input_ids.shape[0], max_length, num_return_sequences=num_return_sequences |
|
) |
|
|
|
output_generate, output_beam_search = self._beam_search_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
beam_scorer=beam_scorer, |
|
beam_kwargs=beam_kwargs, |
|
logits_process_kwargs=logits_process_kwargs, |
|
logits_processor=logits_processor, |
|
) |
|
self.assertListEqual(output_generate.tolist(), output_beam_search.tolist()) |
|
|
|
def test_beam_search_generate_dict_output(self): |
|
for model_class in self.all_generative_model_classes: |
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
|
|
config.use_cache = False |
|
|
|
|
|
|
|
|
|
config.eos_token_id = None |
|
config.forced_eos_token_id = None |
|
|
|
model = model_class(config).to(torch_device).eval() |
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( |
|
input_ids.shape[-1], |
|
config.eos_token_id, |
|
config.forced_bos_token_id, |
|
config.forced_eos_token_id, |
|
max_length, |
|
) |
|
beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length) |
|
output_generate, output_beam_search = self._beam_search_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
beam_scorer=beam_scorer, |
|
beam_kwargs=beam_kwargs, |
|
logits_process_kwargs=logits_process_kwargs, |
|
logits_processor=logits_processor, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
if model.config.is_encoder_decoder: |
|
self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput) |
|
self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput) |
|
else: |
|
self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput) |
|
self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput) |
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist()) |
|
self.assertTrue( |
|
torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3) |
|
) |
|
self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],)) |
|
self.assertTrue((output_generate["sequences_scores"] < 0).all().item()) |
|
|
|
for output in (output_beam_search, output_generate): |
|
self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams) |
|
|
|
def test_beam_search_generate_dict_outputs_use_cache(self): |
|
for model_class in self.all_generative_model_classes: |
|
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
|
|
|
|
|
|
config.eos_token_id = None |
|
config.forced_eos_token_id = None |
|
|
|
if not hasattr(config, "use_cache"): |
|
|
|
return |
|
|
|
model = model_class(config).to(torch_device).eval() |
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( |
|
input_ids.shape[-1], |
|
config.eos_token_id, |
|
config.forced_bos_token_id, |
|
config.forced_eos_token_id, |
|
max_length, |
|
) |
|
|
|
beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs(input_ids.shape[0], max_length) |
|
|
|
config.use_cache = True |
|
config.is_decoder = True |
|
model = model_class(config).to(torch_device).eval() |
|
output_beam, output_generate = self._beam_search_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
beam_scorer=beam_scorer, |
|
beam_kwargs=beam_kwargs, |
|
logits_process_kwargs=logits_process_kwargs, |
|
logits_processor=logits_processor, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_beam.sequences.tolist()) |
|
|
|
for output in (output_beam, output_generate): |
|
self._check_outputs( |
|
output, input_ids, model.config, use_cache=True, num_return_sequences=beam_scorer.num_beams |
|
) |
|
|
|
def test_beam_sample_generate(self): |
|
for model_class in self.all_generative_model_classes: |
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
|
|
|
|
|
|
config.eos_token_id = None |
|
config.forced_eos_token_id = None |
|
|
|
logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1) |
|
|
|
model = model_class(config).to(torch_device).eval() |
|
|
|
|
|
|
|
num_return_sequences = 2 |
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs( |
|
input_ids.shape[0] * num_return_sequences, max_length |
|
) |
|
beam_kwargs["num_return_sequences"] = num_return_sequences |
|
|
|
output_generate, output_beam_sample = self._beam_sample_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
num_return_sequences=num_return_sequences, |
|
beam_scorer=beam_scorer, |
|
beam_kwargs=beam_kwargs, |
|
logits_warper=logits_warper, |
|
logits_warper_kwargs=logits_warper_kwargs, |
|
) |
|
self.assertListEqual(output_generate.tolist(), output_beam_sample.tolist()) |
|
|
|
def test_beam_sample_generate_dict_output(self): |
|
for model_class in self.all_generative_model_classes: |
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
|
|
config.use_cache = False |
|
|
|
|
|
|
|
|
|
config.eos_token_id = None |
|
config.forced_eos_token_id = None |
|
|
|
model = model_class(config).to(torch_device).eval() |
|
logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1) |
|
|
|
num_return_sequences = 2 |
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
beam_kwargs, beam_scorer = self._get_beam_scorer_and_kwargs( |
|
input_ids.shape[0] * num_return_sequences, max_length |
|
) |
|
beam_kwargs["num_return_sequences"] = num_return_sequences |
|
|
|
output_beam_sample, output_generate = self._beam_sample_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
num_return_sequences=num_return_sequences, |
|
beam_scorer=beam_scorer, |
|
beam_kwargs=beam_kwargs, |
|
logits_warper=logits_warper, |
|
logits_warper_kwargs=logits_warper_kwargs, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
|
|
if model.config.is_encoder_decoder: |
|
self.assertIsInstance(output_beam_sample, BeamSampleEncoderDecoderOutput) |
|
self.assertIsInstance(output_generate, BeamSampleEncoderDecoderOutput) |
|
else: |
|
self.assertIsInstance(output_beam_sample, BeamSampleDecoderOnlyOutput) |
|
self.assertIsInstance(output_generate, BeamSampleDecoderOnlyOutput) |
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_beam_sample.sequences.tolist()) |
|
self.assertTrue( |
|
torch.allclose(output_generate["sequences_scores"], output_beam_sample["sequences_scores"], atol=1e-3) |
|
) |
|
self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],)) |
|
self.assertTrue((output_generate["sequences_scores"] < 0).all().item()) |
|
|
|
for output in (output_beam_sample, output_generate): |
|
self._check_outputs( |
|
output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams |
|
) |
|
|
|
def test_generate_without_input_ids(self): |
|
config, _, _, max_length = self._get_input_ids_and_config() |
|
|
|
|
|
if config.bos_token_id is None: |
|
return |
|
|
|
for model_class in self.all_generative_model_classes: |
|
model = model_class(config).to(torch_device) |
|
model.eval() |
|
|
|
output_ids_generate = model.generate(do_sample=False, max_length=max_length, remove_invalid_values=True) |
|
self.assertIsNotNone(output_ids_generate) |
|
|
|
def test_group_beam_search_generate(self): |
|
for model_class in self.all_generative_model_classes: |
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
|
|
|
|
|
|
config.eos_token_id = None |
|
config.forced_eos_token_id = None |
|
|
|
model = model_class(config).to(torch_device).eval() |
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( |
|
input_ids.shape[-1], |
|
config.eos_token_id, |
|
config.forced_bos_token_id, |
|
config.forced_eos_token_id, |
|
max_length, |
|
diversity_penalty=2.0, |
|
) |
|
|
|
|
|
beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs(input_ids.shape[0], max_length) |
|
output_generate, output_group_beam_search = self._group_beam_search_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
beam_scorer=beam_scorer, |
|
beam_kwargs=beam_kwargs, |
|
logits_processor=logits_processor, |
|
logits_process_kwargs=logits_process_kwargs, |
|
) |
|
self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist()) |
|
|
|
|
|
num_return_sequences = 2 |
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs( |
|
input_ids.shape[0], max_length, num_return_sequences=num_return_sequences |
|
) |
|
output_generate, output_group_beam_search = self._group_beam_search_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
beam_scorer=beam_scorer, |
|
beam_kwargs=beam_kwargs, |
|
logits_processor=logits_processor, |
|
logits_process_kwargs=logits_process_kwargs, |
|
) |
|
self.assertListEqual(output_generate.tolist(), output_group_beam_search.tolist()) |
|
|
|
def test_group_beam_search_generate_dict_output(self): |
|
for model_class in self.all_generative_model_classes: |
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
config.use_cache = False |
|
|
|
|
|
|
|
|
|
config.eos_token_id = None |
|
config.forced_eos_token_id = None |
|
|
|
model = model_class(config).to(torch_device).eval() |
|
if model.config.is_encoder_decoder: |
|
max_length = 4 |
|
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( |
|
input_ids.shape[-1], |
|
config.eos_token_id, |
|
config.forced_bos_token_id, |
|
config.forced_eos_token_id, |
|
max_length, |
|
diversity_penalty=2.0, |
|
) |
|
|
|
num_return_sequences = 1 |
|
beam_kwargs, beam_scorer = self._get_diverse_beam_scorer_and_kwargs( |
|
input_ids.shape[0], max_length, num_return_sequences=num_return_sequences |
|
) |
|
output_generate, output_group_beam_search = self._group_beam_search_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
beam_scorer=beam_scorer, |
|
beam_kwargs=beam_kwargs, |
|
logits_processor=logits_processor, |
|
logits_process_kwargs=logits_process_kwargs, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
if model.config.is_encoder_decoder: |
|
self.assertIsInstance(output_group_beam_search, BeamSearchEncoderDecoderOutput) |
|
self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput) |
|
else: |
|
self.assertIsInstance(output_group_beam_search, BeamSearchDecoderOnlyOutput) |
|
self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput) |
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_group_beam_search.sequences.tolist()) |
|
self.assertTrue( |
|
torch.allclose( |
|
output_generate["sequences_scores"], output_group_beam_search["sequences_scores"], atol=1e-3 |
|
) |
|
) |
|
self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],)) |
|
self.assertTrue((output_generate["sequences_scores"] < 0).all().item()) |
|
|
|
for output in (output_group_beam_search, output_generate): |
|
self._check_outputs( |
|
output, input_ids, model.config, num_return_sequences=num_return_sequences * beam_scorer.num_beams |
|
) |
|
|
|
def test_constrained_beam_search_generate(self): |
|
for model_class in self.all_generative_model_classes: |
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
|
|
|
|
|
|
config.eos_token_id = None |
|
config.forced_eos_token_id = None |
|
|
|
model = model_class(config).to(torch_device).eval() |
|
max_length = 20 |
|
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( |
|
input_ids.shape[-1], |
|
config.eos_token_id, |
|
config.forced_bos_token_id, |
|
config.forced_eos_token_id, |
|
max_length, |
|
) |
|
|
|
|
|
|
|
if not input_ids.dtype == torch.float32: |
|
min_id = torch.min(input_ids) + 3 |
|
max_id = torch.max(input_ids) |
|
else: |
|
|
|
min_id = 3 |
|
max_id = 100 |
|
|
|
force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0] |
|
constraints = [ |
|
PhrasalConstraint(force_tokens), |
|
] |
|
|
|
beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs( |
|
input_ids.shape[0], max_length, constraints, num_return_sequences=1 |
|
) |
|
output_generate, output_beam_search = self._constrained_beam_search_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
constrained_beam_scorer=beam_scorer, |
|
constraints=constraints, |
|
beam_kwargs=beam_kwargs, |
|
logits_processor=logits_processor, |
|
logits_process_kwargs=logits_process_kwargs, |
|
) |
|
self.assertListEqual(output_generate.tolist(), output_beam_search.tolist()) |
|
for generation_output in output_generate: |
|
self._check_sequence_inside_sequence(force_tokens, generation_output) |
|
|
|
|
|
|
|
force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0] |
|
constraints = [ |
|
PhrasalConstraint(force_tokens), |
|
] |
|
|
|
num_return_sequences = 2 |
|
max_length = 20 |
|
|
|
beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs( |
|
input_ids.shape[0], max_length, constraints, num_return_sequences=num_return_sequences |
|
) |
|
|
|
output_generate, output_beam_search = self._constrained_beam_search_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
constrained_beam_scorer=beam_scorer, |
|
constraints=constraints, |
|
beam_kwargs=beam_kwargs, |
|
logits_processor=logits_processor, |
|
logits_process_kwargs=logits_process_kwargs, |
|
) |
|
self.assertListEqual(output_generate.tolist(), output_beam_search.tolist()) |
|
|
|
for generation_output in output_generate: |
|
self._check_sequence_inside_sequence(force_tokens, generation_output) |
|
|
|
def test_constrained_beam_search_generate_dict_output(self): |
|
for model_class in self.all_generative_model_classes: |
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
|
|
config.use_cache = False |
|
|
|
|
|
|
|
|
|
config.eos_token_id = None |
|
config.forced_eos_token_id = None |
|
|
|
model = model_class(config).to(torch_device).eval() |
|
if model.config.is_encoder_decoder: |
|
max_length = 20 |
|
|
|
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs( |
|
input_ids.shape[-1], |
|
config.eos_token_id, |
|
config.forced_bos_token_id, |
|
config.forced_eos_token_id, |
|
max_length, |
|
) |
|
|
|
|
|
min_id = 3 |
|
max_id = model.config.vocab_size |
|
force_tokens = torch.randint(min_id, max_id, (1, 2)).tolist()[0] |
|
constraints = [ |
|
PhrasalConstraint(force_tokens), |
|
] |
|
|
|
beam_kwargs, beam_scorer = self._get_constrained_beam_scorer_and_kwargs( |
|
input_ids.shape[0], max_length, constraints, num_return_sequences=1 |
|
) |
|
output_generate, output_beam_search = self._constrained_beam_search_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
constrained_beam_scorer=beam_scorer, |
|
constraints=constraints, |
|
beam_kwargs=beam_kwargs, |
|
logits_processor=logits_processor, |
|
logits_process_kwargs=logits_process_kwargs, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
|
|
if model.config.is_encoder_decoder: |
|
self.assertIsInstance(output_beam_search, BeamSearchEncoderDecoderOutput) |
|
self.assertIsInstance(output_generate, BeamSearchEncoderDecoderOutput) |
|
else: |
|
self.assertIsInstance(output_beam_search, BeamSearchDecoderOnlyOutput) |
|
self.assertIsInstance(output_generate, BeamSearchDecoderOnlyOutput) |
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_beam_search.sequences.tolist()) |
|
self.assertTrue( |
|
torch.allclose(output_generate["sequences_scores"], output_beam_search["sequences_scores"], atol=1e-3) |
|
) |
|
self.assertTrue(output_generate["sequences_scores"].shape == (output_generate["sequences"].shape[0],)) |
|
self.assertTrue((output_generate["sequences_scores"] < 0).all().item()) |
|
|
|
for output in (output_beam_search, output_generate): |
|
self._check_outputs(output, input_ids, model.config, num_return_sequences=beam_scorer.num_beams) |
|
|
|
def test_contrastive_generate(self): |
|
|
|
for model_class in self.all_generative_model_classes: |
|
|
|
if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): |
|
return |
|
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
|
|
if not hasattr(config, "use_cache"): |
|
return |
|
config.use_cache = True |
|
config.is_decoder = True |
|
|
|
|
|
model = model_class(config).to(torch_device).eval() |
|
output_contrastive, output_generate = self._contrastive_generate( |
|
model=model, input_ids=input_ids, attention_mask=attention_mask, max_length=max_length |
|
) |
|
self.assertListEqual(output_contrastive.tolist(), output_generate.tolist()) |
|
|
|
def test_contrastive_generate_dict_outputs_use_cache(self): |
|
for model_class in self.all_generative_model_classes: |
|
|
|
if any(model_name in model_class.__name__.lower() for model_name in ["fsmt", "reformer"]): |
|
return |
|
|
|
|
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
|
|
if not hasattr(config, "use_cache"): |
|
return |
|
config.use_cache = True |
|
config.is_decoder = True |
|
|
|
model = model_class(config).to(torch_device).eval() |
|
output_contrastive, output_generate = self._contrastive_generate( |
|
model=model, |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
max_length=max_length, |
|
output_scores=True, |
|
output_hidden_states=True, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
) |
|
|
|
self.assertListEqual(output_generate.sequences.tolist(), output_contrastive.sequences.tolist()) |
|
|
|
for output in (output_contrastive, output_generate): |
|
self._check_outputs(output, input_ids, model.config, use_cache=True) |
|
|
|
def test_generate_with_head_masking(self): |
|
"""Test designed for encoder-decoder models to ensure the attention head masking is used.""" |
|
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"] |
|
for model_class in self.all_generative_model_classes: |
|
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config() |
|
|
|
if not config.is_encoder_decoder: |
|
continue |
|
model = model_class(config).to(torch_device) |
|
|
|
head_masking = { |
|
"head_mask": torch.zeros(config.encoder_layers, config.encoder_attention_heads, device=torch_device), |
|
"decoder_head_mask": torch.zeros( |
|
config.decoder_layers, config.decoder_attention_heads, device=torch_device |
|
), |
|
"cross_attn_head_mask": torch.zeros( |
|
config.decoder_layers, config.decoder_attention_heads, device=torch_device |
|
), |
|
} |
|
|
|
signature = inspect.signature(model.forward) |
|
|
|
if not set(head_masking.keys()) < {*signature.parameters.keys()}: |
|
continue |
|
|
|
for attn_name, (name, mask) in zip(attention_names, head_masking.items()): |
|
out = model.generate( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
num_beams=1, |
|
output_attentions=True, |
|
return_dict_in_generate=True, |
|
remove_invalid_values=True, |
|
**{name: mask}, |
|
) |
|
|
|
attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] |
|
self.assertEqual(sum([w.sum().item() for w in attn_weights]), 0.0) |
|
|
|
|
|
|
|
@slow |
|
def test_left_padding_compatibility(self): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for model_class in self.all_generative_model_classes: |
|
config, _, _, _ = self._get_input_ids_and_config() |
|
if config.is_encoder_decoder: |
|
continue |
|
model = model_class(config).to(torch_device).eval() |
|
signature = inspect.signature(model.forward).parameters.keys() |
|
|
|
no_failures = True |
|
for _ in range(10): |
|
_, input_ids, attention_mask, _ = self._get_input_ids_and_config() |
|
model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask} |
|
if "position_ids" in signature: |
|
position_ids = torch.cumsum(attention_mask, dim=-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
model_kwargs["position_ids"] = position_ids |
|
next_logits_wo_padding = model(**model_kwargs).logits[:, -1, :] |
|
|
|
pad_size = (input_ids.shape[0], 1) |
|
padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * config.pad_token_id |
|
padded_input_ids = torch.cat((padding, input_ids), dim=1) |
|
padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1) |
|
model_kwargs = {"input_ids": padded_input_ids, "attention_mask": padded_attention_mask} |
|
if "position_ids" in signature: |
|
position_ids = torch.cumsum(padded_attention_mask, dim=-1) - 1 |
|
position_ids.masked_fill_(padded_attention_mask == 0, 1) |
|
model_kwargs["position_ids"] = position_ids |
|
next_logits_with_padding = model(**model_kwargs).logits[:, -1, :] |
|
if not torch.allclose(next_logits_wo_padding, next_logits_with_padding): |
|
no_failures = False |
|
break |
|
|
|
self.assertTrue(no_failures) |
|
|
|
def _check_outputs(self, output, input_ids, config, use_cache=False, num_return_sequences=1): |
|
batch_size, seq_length = input_ids.shape |
|
num_sequences_in_output = batch_size * num_return_sequences |
|
gen_len = ( |
|
output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length |
|
) |
|
|
|
|
|
self._check_scores(num_sequences_in_output, output.scores, length=gen_len, config=config) |
|
|
|
|
|
if config.is_encoder_decoder: |
|
|
|
self._check_encoder_attention_for_generate(output.encoder_attentions, batch_size, config, seq_length) |
|
|
|
self._check_attentions_for_generate( |
|
num_sequences_in_output, |
|
output.decoder_attentions, |
|
min_length=1, |
|
max_length=output.sequences.shape[-1], |
|
config=config, |
|
use_cache=use_cache, |
|
) |
|
else: |
|
|
|
attentions = output.attentions if not use_cache else output.attentions[1:] |
|
min_length = seq_length if not use_cache else seq_length + 1 |
|
self._check_attentions_for_generate( |
|
num_sequences_in_output, |
|
attentions=attentions, |
|
min_length=min_length, |
|
max_length=output.sequences.shape[-1], |
|
config=config, |
|
use_cache=use_cache, |
|
) |
|
|
|
|
|
if config.is_encoder_decoder: |
|
|
|
self._check_encoder_hidden_states_for_generate( |
|
output.encoder_hidden_states, batch_size, config, seq_length |
|
) |
|
|
|
|
|
self._check_hidden_states_for_generate( |
|
num_sequences_in_output, |
|
output.decoder_hidden_states, |
|
min_length=1, |
|
max_length=output.sequences.shape[-1], |
|
config=config, |
|
use_cache=use_cache, |
|
) |
|
else: |
|
|
|
hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:] |
|
min_length = seq_length if not use_cache else seq_length + 1 |
|
self._check_hidden_states_for_generate( |
|
num_sequences_in_output, |
|
hidden_states, |
|
min_length=min_length, |
|
max_length=output.sequences.shape[-1], |
|
config=config, |
|
use_cache=use_cache, |
|
) |
|
|
|
def _check_scores(self, batch_size, scores, length, config): |
|
expected_shape = (batch_size, config.vocab_size) |
|
self.assertIsInstance(scores, tuple) |
|
self.assertEqual(len(scores), length) |
|
self.assertListEqual([iter_scores.shape for iter_scores in scores], [expected_shape] * len(scores)) |
|
|
|
def _check_attentions_for_generate( |
|
self, batch_size, attentions, min_length, max_length, config, use_cache=False, num_beam_groups=1 |
|
): |
|
self.assertIsInstance(attentions, tuple) |
|
self.assertListEqual( |
|
[isinstance(iter_attentions, tuple) for iter_attentions in attentions], [True] * len(attentions) |
|
) |
|
self.assertEqual(len(attentions), (max_length - min_length) * num_beam_groups) |
|
|
|
for idx, iter_attentions in enumerate(attentions): |
|
tgt_len = min_length + idx if not use_cache else 1 |
|
src_len = min_length + idx |
|
|
|
expected_shape = ( |
|
batch_size * num_beam_groups, |
|
config.num_attention_heads, |
|
tgt_len, |
|
src_len, |
|
) |
|
|
|
self.assertListEqual( |
|
[layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(iter_attentions) |
|
) |
|
|
|
def _check_encoder_attention_for_generate(self, attentions, batch_size, config, seq_length): |
|
encoder_expected_shape = (batch_size, config.num_attention_heads, seq_length, seq_length) |
|
self.assertIsInstance(attentions, tuple) |
|
self.assertListEqual( |
|
[layer_attentions.shape for layer_attentions in attentions], |
|
[encoder_expected_shape] * len(attentions), |
|
) |
|
|
|
def _check_hidden_states_for_generate( |
|
self, batch_size, hidden_states, min_length, max_length, config, use_cache=False, num_beam_groups=1 |
|
): |
|
self.assertIsInstance(hidden_states, tuple) |
|
self.assertListEqual( |
|
[isinstance(iter_hidden_states, tuple) for iter_hidden_states in hidden_states], |
|
[True] * len(hidden_states), |
|
) |
|
self.assertEqual(len(hidden_states), (max_length - min_length) * num_beam_groups) |
|
|
|
for idx, iter_hidden_states in enumerate(hidden_states): |
|
seq_len = min_length + idx if not use_cache else 1 |
|
expected_shape = (batch_size * num_beam_groups, seq_len, config.hidden_size) |
|
|
|
self.assertListEqual( |
|
[layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], |
|
[expected_shape] * len(iter_hidden_states), |
|
) |
|
|
|
def _check_encoder_hidden_states_for_generate(self, hidden_states, batch_size, config, seq_length): |
|
encoder_expected_shape = (batch_size, seq_length, config.hidden_size) |
|
self.assertIsInstance(hidden_states, tuple) |
|
self.assertListEqual( |
|
[layer_hidden_states.shape for layer_hidden_states in hidden_states], |
|
[encoder_expected_shape] * len(hidden_states), |
|
) |
|
|
|
def _check_sequence_inside_sequence(self, tensor_1, tensor_2): |
|
|
|
|
|
|
|
if not isinstance(tensor_1, list): |
|
tensor_1 = tensor_1.cpu().tolist() |
|
if not isinstance(tensor_2, list): |
|
tensor_2 = tensor_2.cpu().tolist() |
|
|
|
in_order = len(tensor_1) <= len(tensor_2) |
|
longer = tensor_2 if in_order else tensor_1 |
|
shorter = tensor_1 if in_order else tensor_2 |
|
|
|
flag = False |
|
chunk_size = len(shorter) |
|
for chunk_idx in range(len(longer) - chunk_size + 1): |
|
subseq = longer[chunk_idx : chunk_idx + chunk_size] |
|
if subseq == shorter: |
|
flag = True |
|
break |
|
|
|
self.assertTrue(flag) |
|
|
|
|
|
@require_torch |
|
class UtilsFunctionsTest(unittest.TestCase): |
|
|
|
def test_top_k_top_p_filtering(self): |
|
logits = torch.tensor( |
|
[ |
|
[ |
|
8.2220991, |
|
-0.5620044, |
|
5.23229752, |
|
4.0386393, |
|
-6.8798378, |
|
-0.54785802, |
|
-3.2012153, |
|
2.92777176, |
|
1.88171953, |
|
7.35341276, |
|
8.43207833, |
|
-9.85711836, |
|
-5.96209236, |
|
-1.13039161, |
|
-7.1115294, |
|
-0.8369633, |
|
-5.3186408, |
|
7.06427407, |
|
0.81369344, |
|
-0.82023817, |
|
-5.9179796, |
|
0.58813443, |
|
-6.99778438, |
|
4.71551189, |
|
-0.18771637, |
|
7.44020759, |
|
9.38450987, |
|
2.12662941, |
|
-9.32562038, |
|
2.35652522, |
|
], |
|
[ |
|
0.58425518, |
|
4.53139238, |
|
-5.57510464, |
|
-6.28030699, |
|
-7.19529503, |
|
-4.02122551, |
|
1.39337037, |
|
-6.06707057, |
|
1.59480517, |
|
-9.643119, |
|
0.03907799, |
|
0.67231762, |
|
-8.88206726, |
|
6.27115922, |
|
2.28520723, |
|
4.82767506, |
|
4.30421368, |
|
8.8275313, |
|
5.44029958, |
|
-4.4735794, |
|
7.38579536, |
|
-2.91051663, |
|
2.61946077, |
|
-2.5674762, |
|
-9.48959302, |
|
-4.02922645, |
|
-1.35416918, |
|
9.67702323, |
|
-5.89478553, |
|
1.85370467, |
|
], |
|
], |
|
dtype=torch.float, |
|
device=torch_device, |
|
) |
|
|
|
non_inf_expected_idx = torch.tensor( |
|
[[0, 0], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 20], [1, 27]], |
|
dtype=torch.long, |
|
device=torch_device, |
|
) |
|
|
|
non_inf_expected_output = torch.tensor( |
|
[ |
|
8.2221, |
|
8.4321, |
|
7.4402, |
|
9.3845, |
|
6.2712, |
|
8.8275, |
|
7.3858, |
|
9.6770, |
|
], |
|
dtype=torch.float, |
|
device=torch_device, |
|
) |
|
|
|
output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4) |
|
non_inf_output = output[output != -float("inf")].to(device=torch_device) |
|
non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device) |
|
|
|
self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12)) |
|
self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx))) |
|
|
|
|
|
def test_top_k_top_p_filtering_with_filter_value(self): |
|
logits = torch.tensor( |
|
[ |
|
[ |
|
1, |
|
1, |
|
1, |
|
0.99, |
|
0.98, |
|
] |
|
], |
|
dtype=torch.float, |
|
device=torch_device, |
|
) |
|
|
|
expected_output = torch.tensor( |
|
[[1, 1, 1, 0, 0]], |
|
dtype=torch.float, |
|
device=torch_device, |
|
) |
|
|
|
output = top_k_top_p_filtering(logits, top_k=4, top_p=0.5, filter_value=0.0) |
|
|
|
self.assertTrue(torch.allclose(expected_output, output, atol=1e-12)) |
|
|
|
|
|
@require_torch |
|
class GenerationIntegrationTests(unittest.TestCase, GenerationIntegrationTestsMixin): |
|
|
|
if is_torch_available(): |
|
framework_dependent_parameters = { |
|
"AutoModelForCausalLM": AutoModelForCausalLM, |
|
"AutoModelForSpeechSeq2Seq": AutoModelForSpeechSeq2Seq, |
|
"AutoModelForSeq2SeqLM": AutoModelForSeq2SeqLM, |
|
"AutoModelForVision2Seq": AutoModelForVision2Seq, |
|
"LogitsProcessorList": LogitsProcessorList, |
|
"MinLengthLogitsProcessor": MinLengthLogitsProcessor, |
|
"create_tensor_fn": torch.tensor, |
|
"floats_tensor": floats_tensor, |
|
"return_tensors": "pt", |
|
} |
|
|
|
@slow |
|
def test_diverse_beam_search(self): |
|
|
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood. |
|
The celebrity couple announced the arrival of their son, Silas Randall Timberlake, in statements to People. |
|
"Silas was the middle name of Timberlake's maternal grandfather Bill Bomar, who died in 2012, while Randall is the musician's own middle name, as well as his father's first," People reports. |
|
The couple announced the pregnancy in January, with an Instagram post. It is the first baby for both.""" |
|
|
|
bart_tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn") |
|
bart_model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn").to(torch_device) |
|
input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) |
|
|
|
outputs = bart_model.generate( |
|
input_ids, |
|
num_beams=4, |
|
num_return_sequences=2, |
|
num_beam_groups=4, |
|
diversity_penalty=2.0, |
|
remove_invalid_values=True, |
|
) |
|
|
|
generated_text = bart_tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
self.assertListEqual( |
|
generated_text, |
|
[ |
|
"The couple announced the birth of their son, Silas Randall Timberlake, in a statement. Silas was the" |
|
" middle name of Timberlake's maternal grandfather Bill Bomar. Randall is the musician's own middle" |
|
" name, as well as his father's first. It is the first baby for both of them.", |
|
"Justin Timberlake and Jessica Biel have a son. The baby is named Silas Randall Timberlake. It is the" |
|
" first child for both. The couple announced the pregnancy in January. The name Silas is the middle" |
|
" name of Timberlake's maternal grandfather. It's also his own middle name.", |
|
], |
|
) |
|
|
|
def test_max_length_backward_compat_greedy(self): |
|
|
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" |
|
bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to( |
|
torch_device |
|
) |
|
input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) |
|
|
|
max_length = 20 |
|
input_ids = input_ids.expand(2, -1) |
|
model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {}) |
|
input_ids = bart_model._prepare_decoder_input_ids_for_generation( |
|
input_ids.shape[0], |
|
decoder_start_token_id=bart_model.config.decoder_start_token_id, |
|
bos_token_id=bart_model.config.bos_token_id, |
|
) |
|
|
|
with self.assertWarns(UserWarning): |
|
bart_model.greedy_search( |
|
input_ids, |
|
max_length=max_length, |
|
pad_token_id=bart_model.config.pad_token_id, |
|
eos_token_id=bart_model.config.eos_token_id, |
|
**model_kwargs, |
|
) |
|
|
|
def test_max_length_backward_compat_sample(self): |
|
|
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" |
|
bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to( |
|
torch_device |
|
) |
|
input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) |
|
|
|
max_length = 20 |
|
input_ids = input_ids.expand(2, -1) |
|
model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {}) |
|
input_ids = bart_model._prepare_decoder_input_ids_for_generation( |
|
input_ids.shape[0], |
|
decoder_start_token_id=bart_model.config.decoder_start_token_id, |
|
bos_token_id=bart_model.config.bos_token_id, |
|
) |
|
with torch.no_grad(): |
|
with self.assertWarns(UserWarning): |
|
bart_model.sample( |
|
input_ids, |
|
max_length=max_length, |
|
pad_token_id=bart_model.config.pad_token_id, |
|
eos_token_id=bart_model.config.eos_token_id, |
|
**model_kwargs, |
|
) |
|
|
|
def test_max_length_backward_compat_beam_search(self): |
|
|
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" |
|
bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to( |
|
torch_device |
|
) |
|
input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) |
|
|
|
batch_size = 1 |
|
max_length = 20 |
|
num_beams = 2 |
|
|
|
input_ids = input_ids.expand(2, -1) |
|
model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {}) |
|
input_ids = bart_model._prepare_decoder_input_ids_for_generation( |
|
input_ids.shape[0], |
|
decoder_start_token_id=bart_model.config.decoder_start_token_id, |
|
bos_token_id=bart_model.config.bos_token_id, |
|
) |
|
|
|
beam_scorer = BeamSearchScorer( |
|
batch_size=batch_size, |
|
num_beams=num_beams, |
|
device=torch_device, |
|
) |
|
with self.assertWarns(UserWarning): |
|
_ = bart_model.beam_search( |
|
input_ids, num_beams=num_beams, max_length=max_length, beam_scorer=beam_scorer, **model_kwargs |
|
) |
|
|
|
def test_max_length_backward_compat_group_beam_search(self): |
|
|
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" |
|
bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to( |
|
torch_device |
|
) |
|
input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) |
|
|
|
batch_size = 1 |
|
max_length = 20 |
|
num_beams = 6 |
|
num_beam_groups = 3 |
|
num_return_sequences = num_beams * batch_size |
|
|
|
input_ids = input_ids.expand(6, -1) |
|
model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {}) |
|
input_ids = bart_model._prepare_decoder_input_ids_for_generation( |
|
input_ids.shape[0], |
|
decoder_start_token_id=bart_model.config.decoder_start_token_id, |
|
bos_token_id=bart_model.config.bos_token_id, |
|
) |
|
|
|
diverse_beam_scorer = BeamSearchScorer( |
|
batch_size=batch_size, |
|
num_beams=num_beams, |
|
device=torch_device, |
|
num_beam_hyps_to_keep=num_return_sequences, |
|
num_beam_groups=num_beam_groups, |
|
) |
|
with self.assertWarns(UserWarning): |
|
bart_model.group_beam_search( |
|
input_ids, diverse_beam_scorer, num_beams=num_beams, max_length=max_length, **model_kwargs |
|
) |
|
|
|
def test_max_length_warning_if_different(self): |
|
|
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" |
|
bart_tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to( |
|
torch_device |
|
) |
|
input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) |
|
|
|
batch_size = 1 |
|
|
|
max_length = 20 |
|
num_beams = 6 |
|
num_beam_groups = 3 |
|
num_return_sequences = num_beams * batch_size |
|
stopping_criteria_max_length = 18 |
|
stopping_criteria = StoppingCriteriaList([MaxLengthCriteria(max_length=stopping_criteria_max_length)]) |
|
|
|
|
|
input_ids = input_ids.expand(6, -1) |
|
model_kwargs = bart_model._prepare_encoder_decoder_kwargs_for_generation(input_ids, {}) |
|
input_ids = bart_model._prepare_decoder_input_ids_for_generation( |
|
input_ids.shape[0], |
|
decoder_start_token_id=bart_model.config.decoder_start_token_id, |
|
bos_token_id=bart_model.config.bos_token_id, |
|
) |
|
|
|
with self.assertWarns(UserWarning): |
|
bart_model.greedy_search( |
|
input_ids, |
|
max_length=max_length, |
|
pad_token_id=bart_model.config.pad_token_id, |
|
stopping_criteria=stopping_criteria, |
|
eos_token_id=bart_model.config.eos_token_id, |
|
**model_kwargs, |
|
) |
|
|
|
|
|
with self.assertWarns(UserWarning): |
|
with torch.no_grad(): |
|
bart_model.sample( |
|
input_ids, |
|
max_length=max_length, |
|
stopping_criteria=stopping_criteria, |
|
pad_token_id=bart_model.config.pad_token_id, |
|
eos_token_id=bart_model.config.eos_token_id, |
|
**model_kwargs, |
|
) |
|
|
|
|
|
beam_scorer = BeamSearchScorer( |
|
batch_size=batch_size, |
|
num_beams=num_beams, |
|
device=torch_device, |
|
) |
|
with self.assertWarns(UserWarning): |
|
with torch.no_grad(): |
|
bart_model.beam_search( |
|
input_ids, |
|
num_beams=num_beams, |
|
stopping_criteria=stopping_criteria, |
|
max_length=max_length, |
|
beam_scorer=beam_scorer, |
|
**model_kwargs, |
|
) |
|
|
|
|
|
diverse_beam_scorer = BeamSearchScorer( |
|
batch_size=batch_size, |
|
num_beams=num_beams, |
|
device=torch_device, |
|
num_beam_hyps_to_keep=num_return_sequences, |
|
num_beam_groups=num_beam_groups, |
|
) |
|
with self.assertWarns(UserWarning): |
|
bart_model.group_beam_search( |
|
input_ids, |
|
diverse_beam_scorer, |
|
stopping_criteria=stopping_criteria, |
|
num_beams=num_beams, |
|
max_length=max_length, |
|
**model_kwargs, |
|
) |
|
|
|
def test_custom_stopping_criteria_overload_error(self): |
|
|
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" |
|
bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random") |
|
bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device) |
|
|
|
input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) |
|
stopping_criteria = StoppingCriteriaList() |
|
stopping_criteria.append(MaxLengthCriteria(max_length=42)) |
|
with self.assertRaises(ValueError): |
|
bart_model.generate(input_ids, stopping_criteria=stopping_criteria) |
|
with self.assertRaises(ValueError): |
|
bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=32) |
|
|
|
def test_custom_stopping_criteria(self): |
|
|
|
article = """Justin Timberlake and Jessica Biel, welcome to parenthood.""" |
|
bart_tokenizer = BartTokenizer.from_pretrained("sshleifer/bart-tiny-random") |
|
bart_model = BartForConditionalGeneration.from_pretrained("sshleifer/bart-tiny-random").to(torch_device) |
|
input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) |
|
|
|
class DummyCriteria(StoppingCriteria): |
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
return input_ids.shape[-1] >= 20 |
|
|
|
stopping_criteria = StoppingCriteriaList() |
|
stopping_criteria.append(DummyCriteria()) |
|
|
|
self.assertEqual( |
|
list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=22).shape), |
|
[1, 20], |
|
) |
|
self.assertEqual( |
|
list(bart_model.generate(input_ids, stopping_criteria=stopping_criteria, max_length=18).shape), |
|
[1, 18], |
|
) |
|
|
|
def test_stop_sequence_stopping_criteria(self): |
|
|
|
prompt = """Hello I believe in""" |
|
generator = pipeline("text-generation", model="hf-internal-testing/tiny-random-bart") |
|
output = generator(prompt) |
|
self.assertEqual( |
|
output, |
|
[ |
|
{ |
|
"generated_text": ( |
|
"Hello I believe in in in number number number number number number number number number" |
|
) |
|
} |
|
], |
|
) |
|
|
|
output = generator(prompt, stop_sequence=" number") |
|
self.assertEqual(output, [{"generated_text": "Hello I believe in in in number"}]) |
|
|
|
def test_generate_non_nlp_input_ids_as_kwarg(self): |
|
|
|
model = ImageGPTForCausalImageModeling.from_pretrained( |
|
"hf-internal-testing/tiny-random-imagegpt", max_length=10 |
|
).to(torch_device) |
|
input_ids = ids_tensor((3, 5), vocab_size=10) |
|
|
|
output_sequences_kwargs = model.generate(input_ids=input_ids).cpu() |
|
output_sequences = model.generate(input_ids).cpu() |
|
|
|
self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist()) |
|
self.assertEqual(output_sequences.shape, (3, 10)) |
|
|
|
def test_generate_input_values_as_encoder_kwarg(self): |
|
|
|
input_values = floats_tensor((2, 250)) |
|
model = SpeechEncoderDecoderModel.from_pretrained("hf-internal-testing/tiny-random-speech-encoder-decoder") |
|
model = model.to(torch_device) |
|
output_sequences_kwargs = model.generate(input_values=input_values, max_length=5).cpu() |
|
output_sequences = model.generate(input_values, max_length=5).cpu() |
|
|
|
self.assertListEqual(output_sequences.tolist(), output_sequences_kwargs.tolist()) |
|
self.assertEqual(output_sequences.shape, (2, 5)) |
|
|
|
def test_transition_scores_group_beam_search_encoder_decoder(self): |
|
|
|
articles = [ |
|
"Justin Timberlake and Jessica Biel, welcome to parenthood.", |
|
"Michael Phelps is arguably the most decorated Olympian of all time.", |
|
] |
|
tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
model = BartForConditionalGeneration.from_pretrained( |
|
"hf-internal-testing/tiny-random-bart", |
|
max_length=10, |
|
num_beams=2, |
|
num_beam_groups=2, |
|
num_return_sequences=2, |
|
eos_token_id=None, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
length_penalty=0.0, |
|
) |
|
model = model.to(torch_device) |
|
|
|
input_ids = tokenizer(articles, return_tensors="pt", padding=True).input_ids.to(torch_device) |
|
outputs = model.generate(input_ids=input_ids) |
|
|
|
transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, outputs.beam_indices) |
|
transition_scores_sum = transition_scores.sum(-1) |
|
|
|
self.assertTrue(torch.allclose(transition_scores_sum, outputs.sequences_scores, atol=1e-3)) |
|
|
|
@slow |
|
def test_beam_search_example_integration(self): |
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("t5-base") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") |
|
|
|
encoder_input_str = "translate English to German: How old are you?" |
|
encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids |
|
|
|
|
|
num_beams = 3 |
|
|
|
input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long) |
|
input_ids = input_ids * model.config.decoder_start_token_id |
|
|
|
|
|
model_kwargs = { |
|
"encoder_outputs": model.get_encoder()( |
|
encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True |
|
) |
|
} |
|
|
|
|
|
beam_scorer = BeamSearchScorer( |
|
batch_size=1, |
|
num_beams=num_beams, |
|
device=model.device, |
|
) |
|
|
|
|
|
logits_processor = LogitsProcessorList( |
|
[ |
|
MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id), |
|
] |
|
) |
|
|
|
outputs = model.beam_search(input_ids, beam_scorer, logits_processor=logits_processor, **model_kwargs) |
|
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
self.assertListEqual(outputs, ["Wie alt bist du?"]) |
|
|
|
@slow |
|
def test_constrained_beam_search(self): |
|
|
|
model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device) |
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
|
|
force_tokens = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids |
|
force_tokens_2 = tokenizer("big weapons", add_prefix_space=True, add_special_tokens=False).input_ids |
|
|
|
constraints = [ |
|
PhrasalConstraint(force_tokens), |
|
PhrasalConstraint(force_tokens_2), |
|
] |
|
|
|
starting_text = ["The soldiers were not prepared and"] |
|
|
|
input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device) |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
constraints=constraints, |
|
num_beams=10, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=1, |
|
max_length=30, |
|
remove_invalid_values=True, |
|
) |
|
|
|
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
self.assertListEqual( |
|
generated_text, |
|
[ |
|
"The soldiers were not prepared and didn't know what to do. They had no idea how they would react if" |
|
" the enemy attacked them, big weapons scared" |
|
], |
|
) |
|
|
|
@slow |
|
def test_constrained_beam_search_mixed(self): |
|
|
|
model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device) |
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
|
|
force_phrase = tokenizer("scared", add_prefix_space=True, add_special_tokens=False).input_ids |
|
flexible_phrases = tokenizer( |
|
["scream", "screams", "screaming", "screamed"], add_prefix_space=True, add_special_tokens=False |
|
).input_ids |
|
|
|
constraints = [ |
|
PhrasalConstraint(force_phrase), |
|
DisjunctiveConstraint(flexible_phrases), |
|
] |
|
|
|
starting_text = ["The soldiers", "The child"] |
|
|
|
input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device) |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
constraints=constraints, |
|
num_beams=10, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=1, |
|
|
|
remove_invalid_values=True, |
|
) |
|
|
|
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
self.assertListEqual( |
|
generated_text, |
|
[ |
|
"The soldiers, who had been stationed at the base for more than a year before being evacuated" |
|
" screaming scared", |
|
"The child was taken to a local hospital where he died.\n 'I don't think screaming scared", |
|
], |
|
) |
|
|
|
@slow |
|
def test_constrained_beam_search_mixed_mixin(self): |
|
|
|
model = GPT2LMHeadModel.from_pretrained("gpt2").to(torch_device) |
|
tokenizer = GPT2Tokenizer.from_pretrained("gpt2") |
|
|
|
force_word = "scared" |
|
force_flexible = ["scream", "screams", "screaming", "screamed"] |
|
|
|
force_words_ids = [ |
|
tokenizer([force_word], add_prefix_space=True, add_special_tokens=False).input_ids, |
|
tokenizer(force_flexible, add_prefix_space=True, add_special_tokens=False).input_ids, |
|
] |
|
|
|
starting_text = ["The soldiers", "The child"] |
|
|
|
input_ids = tokenizer(starting_text, return_tensors="pt").input_ids.to(torch_device) |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
force_words_ids=force_words_ids, |
|
num_beams=10, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=1, |
|
remove_invalid_values=True, |
|
) |
|
|
|
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
self.assertListEqual( |
|
generated_text, |
|
[ |
|
"The soldiers, who had been stationed at the base for more than a year before being evacuated" |
|
" screaming scared", |
|
"The child was taken to a local hospital where he died.\n 'I don't think screaming scared", |
|
], |
|
) |
|
|
|
@slow |
|
def test_constrained_beam_search_example_translation_mixin(self): |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("t5-base") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") |
|
|
|
encoder_input_str = "translate English to German: How old are you?" |
|
force_words = ["sind"] |
|
|
|
input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids |
|
force_words_ids = tokenizer(force_words, add_special_tokens=False).input_ids |
|
|
|
outputs = model.generate( |
|
input_ids, |
|
force_words_ids=force_words_ids, |
|
num_beams=10, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=1, |
|
remove_invalid_values=True, |
|
) |
|
|
|
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
self.assertListEqual(outputs, ["Wie alt sind Sie?"]) |
|
|
|
@slow |
|
def test_constrained_beam_search_example_integration(self): |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("t5-base") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("t5-base") |
|
|
|
encoder_input_str = "translate English to German: How old are you?" |
|
encoder_input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids |
|
|
|
|
|
num_beams = 5 |
|
|
|
input_ids = torch.ones((num_beams, 1), device=model.device, dtype=torch.long) |
|
input_ids = input_ids * model.config.decoder_start_token_id |
|
|
|
|
|
model_kwargs = { |
|
"encoder_outputs": model.get_encoder()( |
|
encoder_input_ids.repeat_interleave(num_beams, dim=0), return_dict=True |
|
) |
|
} |
|
|
|
constraint_str = "sind" |
|
constraint_token_ids = tokenizer.encode(constraint_str)[:-1] |
|
constraints = [PhrasalConstraint(token_ids=constraint_token_ids)] |
|
|
|
|
|
beam_scorer = ConstrainedBeamSearchScorer( |
|
batch_size=1, num_beams=num_beams, device=model.device, constraints=constraints |
|
) |
|
|
|
|
|
logits_processor = LogitsProcessorList( |
|
[ |
|
MinLengthLogitsProcessor(5, eos_token_id=model.config.eos_token_id), |
|
] |
|
) |
|
|
|
outputs = model.constrained_beam_search( |
|
input_ids, beam_scorer, constraints=constraints, logits_processor=logits_processor, **model_kwargs |
|
) |
|
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|
|
self.assertListEqual(outputs, ["Wie alt sind Sie?"]) |
|
|
|
def test_constrained_beam_search_mixin_type_checks(self): |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("patrickvonplaten/t5-tiny-random") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("patrickvonplaten/t5-tiny-random") |
|
|
|
encoder_input_str = "translate English to German: How old are you?" |
|
input_ids = tokenizer(encoder_input_str, return_tensors="pt").input_ids |
|
|
|
with self.assertRaises(ValueError): |
|
force_words = ["sind"] |
|
force_words_ids = tokenizer(force_words, return_tensors="pt").input_ids |
|
model.generate( |
|
input_ids, |
|
force_words_ids=force_words_ids, |
|
num_beams=10, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=1, |
|
remove_invalid_values=True, |
|
) |
|
|
|
with self.assertRaises(ValueError): |
|
force_words = ["sind"] |
|
force_words_ids = [tokenizer(force_words, return_tensors="pt").input_ids] |
|
model.generate( |
|
input_ids, |
|
force_words_ids=force_words_ids, |
|
num_beams=10, |
|
num_return_sequences=1, |
|
no_repeat_ngram_size=1, |
|
remove_invalid_values=True, |
|
) |
|
|
|
with self.assertRaises(ValueError): |
|
model.generate(input_ids, force_words_ids=[]) |
|
|
|
with self.assertRaises(ValueError): |
|
model.generate(input_ids, force_words_ids=[[-1]]) |
|
|
|
with self.assertRaises(ValueError): |
|
model.generate(input_ids, force_words_ids=[[[-1]]]) |
|
|
|
def test_contrastive_search_batched(self): |
|
|
|
|
|
articles = ["Foo", "Bar Baz"] |
|
tokenizer = BartTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device) |
|
|
|
model.config.eos_token_id = None |
|
input_ids_batched = tokenizer(articles, padding=True, return_tensors="pt").input_ids.to(torch_device) |
|
input_ids = tokenizer(articles[1], return_tensors="pt").input_ids.to(torch_device) |
|
|
|
output_sequences_batched = model.generate( |
|
input_ids=input_ids_batched, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True |
|
) |
|
output_sequences = model.generate( |
|
input_ids=input_ids, penalty_alpha=0.6, top_k=4, return_dict_in_generate=True, output_scores=True |
|
) |
|
|
|
batched_out = tokenizer.decode(output_sequences_batched.sequences[1], skip_special_tokens=True) |
|
out = tokenizer.decode(output_sequences.sequences[0], skip_special_tokens=True) |
|
self.assertEqual(batched_out, out) |
|
|
|
|
|
max_score_diff = (output_sequences_batched.scores[0][1] - output_sequences.scores[0][0]).abs().max() |
|
self.assertTrue(max_score_diff < 1e-5) |
|
|
|
def test_eos_token_id_int_and_list_top_k_top_sampling(self): |
|
|
|
generation_kwargs = { |
|
"do_sample": True, |
|
"num_beams": 1, |
|
"top_p": 0.7, |
|
"top_k": 10, |
|
"temperature": 0.7, |
|
} |
|
expectation = 20 |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
text = """Hello, my dog is cute and""" |
|
tokens = tokenizer(text, return_tensors="pt").to(torch_device) |
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) |
|
|
|
torch.manual_seed(0) |
|
eos_token_id = 846 |
|
generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) |
|
self.assertTrue(expectation == len(generated_tokens[0])) |
|
|
|
torch.manual_seed(0) |
|
eos_token_id = [846, 198] |
|
generated_tokens = model.generate(**tokens, eos_token_id=eos_token_id, **generation_kwargs) |
|
self.assertTrue(expectation == len(generated_tokens[0])) |
|
|
|
def test_generate_from_inputs_embeds_decoder_only(self): |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) |
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") |
|
model.config.pad_token_id = tokenizer.eos_token_id |
|
|
|
text = "Hello world" |
|
tokenized_inputs = tokenizer([text, text], return_tensors="pt") |
|
input_ids = tokenized_inputs.input_ids.to(torch_device) |
|
|
|
|
|
outputs_from_ids = model.generate(input_ids) |
|
self.assertEqual(outputs_from_ids.shape, (2, 20)) |
|
|
|
|
|
inputs_embeds = model.transformer.wte(input_ids) |
|
outputs_from_embeds = model.generate(input_ids, inputs_embeds=inputs_embeds) |
|
self.assertListEqual(outputs_from_ids.tolist(), outputs_from_embeds.tolist()) |
|
|
|
|
|
torch.manual_seed(0) |
|
random_embeds = torch.rand_like(inputs_embeds) |
|
outputs_from_rand_embeds = model.generate(input_ids, inputs_embeds=random_embeds) |
|
with self.assertRaises(AssertionError): |
|
self.assertListEqual(outputs_from_rand_embeds.tolist(), outputs_from_embeds.tolist()) |
|
|
|
|
|
outputs_from_embeds_wo_ids = model.generate( |
|
inputs_embeds=inputs_embeds, max_new_tokens=20 - inputs_embeds.shape[1] |
|
) |
|
self.assertListEqual( |
|
outputs_from_embeds[:, inputs_embeds.shape[1] :].tolist(), |
|
outputs_from_embeds_wo_ids[:, 1:].tolist(), |
|
) |
|
|
|
def test_model_kwarg_encoder_signature_filtering(self): |
|
|
|
bart_tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart") |
|
article = """Hugging Face is a technology company based in New York and Paris.""" |
|
input_ids = bart_tokenizer(article, return_tensors="pt").input_ids.to(torch_device) |
|
bart_model = BartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart").to( |
|
torch_device |
|
) |
|
output = bart_model.generate(input_ids).cpu().numpy() |
|
|
|
|
|
|
|
|
|
|
|
class FakeBart(BartForConditionalGeneration): |
|
def forward(self, input_ids, foo=None, **kwargs): |
|
return super().forward(input_ids, **kwargs) |
|
|
|
bart_model = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart").to(torch_device) |
|
fake_output = bart_model.generate(input_ids, foo="bar").cpu().numpy() |
|
self.assertTrue(np.array_equal(output, fake_output)) |
|
|
|
|
|
|
|
class FakeEncoder(bart_model.model.encoder.__class__): |
|
def forward(self, input_ids, **kwargs): |
|
return super().forward(input_ids, **kwargs) |
|
|
|
fake_encoder = FakeEncoder(bart_model.config, bart_model.model.shared).to(torch_device) |
|
bart_model.model.encoder = fake_encoder |
|
|
|
|
|
fake_output = bart_model.generate(input_ids).cpu().numpy() |
|
with self.assertRaises(TypeError): |
|
|
|
bart_model.generate(input_ids, foo="bar") |
|
|