|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import tempfile |
|
import unittest |
|
|
|
from packaging import version |
|
|
|
from transformers import ( |
|
AutoModel, |
|
AutoModelForCausalLM, |
|
AutoModelForSeq2SeqLM, |
|
AutoModelForSequenceClassification, |
|
AutoTokenizer, |
|
BitsAndBytesConfig, |
|
pipeline, |
|
) |
|
from transformers.testing_utils import ( |
|
is_torch_available, |
|
require_accelerate, |
|
require_bitsandbytes, |
|
require_torch, |
|
require_torch_gpu, |
|
require_torch_multi_gpu, |
|
slow, |
|
) |
|
from transformers.utils.versions import importlib_metadata |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
import torch.nn as nn |
|
|
|
class LoRALayer(nn.Module): |
|
"""Wraps a linear layer with LoRA-like adapter - Used for testing purposes only""" |
|
|
|
def __init__(self, module: nn.Module, rank: int): |
|
super().__init__() |
|
self.module = module |
|
self.adapter = nn.Sequential( |
|
nn.Linear(module.in_features, rank, bias=False), |
|
nn.Linear(rank, module.out_features, bias=False), |
|
) |
|
small_std = (2.0 / (5 * min(module.in_features, module.out_features))) ** 0.5 |
|
nn.init.normal_(self.adapter[0].weight, std=small_std) |
|
nn.init.zeros_(self.adapter[1].weight) |
|
self.adapter.to(module.weight.device) |
|
|
|
def forward(self, input, *args, **kwargs): |
|
return self.module(input, *args, **kwargs) + self.adapter(input) |
|
|
|
|
|
@require_bitsandbytes |
|
@require_accelerate |
|
@require_torch |
|
@require_torch_gpu |
|
@slow |
|
class BaseMixedInt8Test(unittest.TestCase): |
|
|
|
|
|
|
|
|
|
model_name = "bigscience/bloom-1b7" |
|
|
|
|
|
EXPECTED_RELATIVE_DIFFERENCE = ( |
|
1.540025 |
|
) |
|
|
|
input_text = "Hello my name is" |
|
EXPECTED_OUTPUT = "Hello my name is John.\nI am a friend of the family.\n" |
|
MAX_NEW_TOKENS = 10 |
|
|
|
def setUp(self): |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) |
|
|
|
|
|
class MixedInt8Test(BaseMixedInt8Test): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
|
|
self.model_fp16 = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, torch_dtype=torch.float16, device_map="auto" |
|
) |
|
self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") |
|
|
|
def tearDown(self): |
|
r""" |
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to |
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 |
|
""" |
|
del self.model_fp16 |
|
del self.model_8bit |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_memory_footprint(self): |
|
r""" |
|
A simple test to check if the model conversion has been done correctly by checking on the |
|
memory footprint of the converted model and the class type of the linear layers of the converted models |
|
""" |
|
from bitsandbytes.nn import Int8Params |
|
|
|
mem_fp16 = self.model_fp16.get_memory_footprint() |
|
mem_8bit = self.model_8bit.get_memory_footprint() |
|
|
|
self.assertAlmostEqual(mem_fp16 / mem_8bit, self.EXPECTED_RELATIVE_DIFFERENCE) |
|
self.assertTrue(self.model_8bit.transformer.h[0].mlp.dense_4h_to_h.weight.__class__ == Int8Params) |
|
|
|
def test_generate_quality(self): |
|
r""" |
|
Test the generation quality of the quantized model and see that we are matching the expected output. |
|
Given that we are operating on small numbers + the testing model is relatively small, we might not get |
|
the same output across GPUs. So we'll generate few tokens (5-10) and check their output. |
|
""" |
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") |
|
output_sequences = self.model_8bit.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) |
|
|
|
self.assertEqual(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) |
|
|
|
def test_generate_quality_config(self): |
|
r""" |
|
Test that loading the model with the config is equivalent |
|
""" |
|
bnb_config = BitsAndBytesConfig() |
|
|
|
model_8bit_from_config = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, quantization_config=bnb_config, device_map="auto" |
|
) |
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") |
|
output_sequences = model_8bit_from_config.generate( |
|
input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10 |
|
) |
|
|
|
self.assertEqual(self.tokenizer.decode(output_sequences[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) |
|
|
|
def test_raise_if_config_and_load_in_8bit(self): |
|
r""" |
|
Test that loading the model with the config and `load_in_8bit` raises an error |
|
""" |
|
bnb_config = BitsAndBytesConfig() |
|
|
|
with self.assertRaises(ValueError): |
|
_ = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, |
|
quantization_config=bnb_config, |
|
load_in_8bit=True, |
|
device_map="auto", |
|
llm_int8_enable_fp32_cpu_offload=True, |
|
) |
|
|
|
def test_warns_save_pretrained(self): |
|
r""" |
|
Test whether trying to save a model after converting it in 8-bit will throw a warning. |
|
""" |
|
with self.assertWarns(UserWarning), tempfile.TemporaryDirectory() as tmpdirname: |
|
self.model_8bit.save_pretrained(tmpdirname) |
|
|
|
def test_device_and_dtype_assignment(self): |
|
r""" |
|
Test whether trying to cast (or assigning a device to) a model after converting it in 8-bit will throw an error. |
|
Checks also if other models are casted correctly. |
|
""" |
|
with self.assertRaises(ValueError): |
|
|
|
self.model_8bit.to("cpu") |
|
|
|
with self.assertRaises(ValueError): |
|
|
|
self.model_8bit.to(torch.float16) |
|
|
|
with self.assertRaises(ValueError): |
|
|
|
self.model_8bit.to(torch.device("cuda:0")) |
|
|
|
with self.assertRaises(ValueError): |
|
|
|
self.model_8bit.float() |
|
|
|
with self.assertRaises(ValueError): |
|
|
|
self.model_8bit.half() |
|
|
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") |
|
|
|
self.model_fp16 = self.model_fp16.to(torch.float32) |
|
_ = self.model_fp16.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) |
|
|
|
|
|
_ = self.model_fp16.to("cpu") |
|
|
|
|
|
_ = self.model_fp16.half() |
|
|
|
|
|
_ = self.model_fp16.float() |
|
|
|
def test_fp32_int8_conversion(self): |
|
r""" |
|
Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly. |
|
""" |
|
model = AutoModelForSeq2SeqLM.from_pretrained("t5-small", load_in_8bit=True, device_map="auto") |
|
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.float32) |
|
|
|
|
|
@require_bitsandbytes |
|
@require_accelerate |
|
@require_torch |
|
@require_torch_gpu |
|
@slow |
|
class MixedInt8T5Test(unittest.TestCase): |
|
@classmethod |
|
def setUpClass(cls): |
|
cls.model_name = "t5-small" |
|
cls.dense_act_model_name = "google/flan-t5-small" |
|
cls.tokenizer = AutoTokenizer.from_pretrained(cls.model_name) |
|
cls.input_text = "Translate in German: Hello, my dog is cute" |
|
|
|
def tearDown(self): |
|
r""" |
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to |
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 |
|
""" |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_inference_without_keep_in_fp32(self): |
|
r""" |
|
Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly. |
|
`flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test |
|
both cases. |
|
""" |
|
from transformers import T5ForConditionalGeneration |
|
|
|
T5ForConditionalGeneration._keep_in_fp32_modules = None |
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") |
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) |
|
_ = model.generate(**encoded_input) |
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained( |
|
self.dense_act_model_name, load_in_8bit=True, device_map="auto" |
|
) |
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) |
|
_ = model.generate(**encoded_input) |
|
|
|
def test_inference_with_keep_in_fp32(self): |
|
r""" |
|
Test whether it is possible to mix both `int8` and `fp32` weights when using `keep_in_fp32_modules` correctly. |
|
`flan-t5-small` uses `T5DenseGatedActDense` whereas `t5-small` uses `T5DenseReluDense`. We need to test |
|
both cases. |
|
""" |
|
import bitsandbytes as bnb |
|
|
|
from transformers import T5ForConditionalGeneration |
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") |
|
|
|
|
|
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q, bnb.nn.Linear8bitLt)) |
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) |
|
_ = model.generate(**encoded_input) |
|
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained( |
|
self.dense_act_model_name, load_in_8bit=True, device_map="auto" |
|
) |
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt").to(0) |
|
_ = model.generate(**encoded_input) |
|
|
|
|
|
class MixedInt8ModelClassesTest(BaseMixedInt8Test): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
self.model_name = "bigscience/bloom-560m" |
|
self.seq_to_seq_name = "t5-small" |
|
|
|
|
|
|
|
self.base_model = AutoModel.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") |
|
|
|
self.sequence_model = AutoModelForSequenceClassification.from_pretrained( |
|
self.model_name, load_in_8bit=True, device_map="auto" |
|
) |
|
|
|
self.model_8bit = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") |
|
|
|
self.seq_to_seq_model = AutoModelForSeq2SeqLM.from_pretrained( |
|
self.seq_to_seq_name, load_in_8bit=True, device_map="auto" |
|
) |
|
|
|
def tearDown(self): |
|
r""" |
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to |
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 |
|
""" |
|
del self.base_model |
|
del self.sequence_model |
|
del self.model_8bit |
|
del self.seq_to_seq_model |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_correct_head_class(self): |
|
r""" |
|
A simple test to check if the last modules for some classes (AutoModelForCausalLM or SequenceClassification) |
|
are kept in their native class. |
|
""" |
|
from bitsandbytes.nn import Int8Params |
|
|
|
|
|
self.assertTrue(self.base_model.h[-1].mlp.dense_4h_to_h.weight.__class__ == Int8Params) |
|
|
|
|
|
self.assertTrue(self.model_8bit.lm_head.weight.__class__ == torch.nn.Parameter) |
|
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter) |
|
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter) |
|
|
|
|
|
class MixedInt8TestPipeline(BaseMixedInt8Test): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
def tearDown(self): |
|
r""" |
|
TearDown function needs to be called at the end of each test to free the GPU memory and cache, also to |
|
avoid unexpected behaviors. Please see: https://discuss.pytorch.org/t/how-can-we-release-gpu-memory-cache/14530/27 |
|
""" |
|
del self.pipe |
|
|
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_pipeline(self): |
|
r""" |
|
The aim of this test is to verify that the mixed int8 is compatible with `pipeline` from transformers. Since |
|
we used pipline for inference speed benchmarking we want to make sure that this feature does not break anything |
|
on pipline. |
|
""" |
|
|
|
self.pipe = pipeline( |
|
"text-generation", |
|
model=self.model_name, |
|
model_kwargs={"device_map": "auto", "load_in_8bit": True}, |
|
max_new_tokens=self.MAX_NEW_TOKENS, |
|
) |
|
|
|
|
|
pipeline_output = self.pipe(self.input_text) |
|
self.assertEqual(pipeline_output[0]["generated_text"], self.EXPECTED_OUTPUT) |
|
|
|
|
|
@require_torch_multi_gpu |
|
class MixedInt8TestMultiGpu(BaseMixedInt8Test): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
def test_multi_gpu_loading(self): |
|
r""" |
|
This tests that the model has been loaded and can be used correctly on a multi-GPU setup. |
|
Let's just try to load a model on 2 GPUs and see if it works. The model we test has ~2GB of total, 3GB should suffice |
|
""" |
|
|
|
model_parallel = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, load_in_8bit=True, device_map="balanced" |
|
) |
|
|
|
|
|
self.assertEqual(set(model_parallel.hf_device_map.values()), {0, 1}) |
|
|
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") |
|
|
|
|
|
output_parallel = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) |
|
self.assertEqual(self.tokenizer.decode(output_parallel[0], skip_special_tokens=True), self.EXPECTED_OUTPUT) |
|
|
|
|
|
@require_torch_multi_gpu |
|
class MixedInt8TestCpuGpu(BaseMixedInt8Test): |
|
def setUp(self): |
|
super().setUp() |
|
|
|
def check_inference_correctness(self, model): |
|
|
|
encoded_input = self.tokenizer(self.input_text, return_tensors="pt") |
|
|
|
|
|
output_parallel = model.generate(input_ids=encoded_input["input_ids"].to(0), max_new_tokens=10) |
|
|
|
|
|
output_text = self.tokenizer.decode(output_parallel[0], skip_special_tokens=True) |
|
self.assertEqual(output_text, self.EXPECTED_OUTPUT) |
|
|
|
def test_cpu_gpu_loading_random_device_map(self): |
|
r""" |
|
A test to check is dispatching a model on cpu & gpu works correctly using a random `device_map`. |
|
""" |
|
device_map = { |
|
"transformer.word_embeddings": 0, |
|
"transformer.word_embeddings_layernorm": 0, |
|
"lm_head": 0, |
|
"transformer.h.0": "cpu", |
|
"transformer.h.1": "cpu", |
|
"transformer.h.2": 0, |
|
"transformer.h.3": 0, |
|
"transformer.h.4": 0, |
|
"transformer.h.5": 0, |
|
"transformer.h.6": 0, |
|
"transformer.h.7": 0, |
|
"transformer.h.8": 0, |
|
"transformer.h.9": 1, |
|
"transformer.h.10": 0, |
|
"transformer.h.11": 1, |
|
"transformer.h.12": 0, |
|
"transformer.h.13": 0, |
|
"transformer.h.14": 1, |
|
"transformer.h.15": 0, |
|
"transformer.h.16": 0, |
|
"transformer.h.17": 1, |
|
"transformer.h.18": 1, |
|
"transformer.h.19": 0, |
|
"transformer.h.20": 1, |
|
"transformer.h.21": 1, |
|
"transformer.h.22": 0, |
|
"transformer.h.23": 0, |
|
"transformer.ln_f": 1, |
|
} |
|
|
|
bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True) |
|
|
|
model_8bit = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, |
|
device_map=device_map, |
|
quantization_config=bnb_config, |
|
) |
|
|
|
|
|
self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"}) |
|
|
|
self.check_inference_correctness(model_8bit) |
|
|
|
def test_cpu_gpu_loading_custom_device_map(self): |
|
r""" |
|
A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. |
|
This time the device map is more organized than the test above and uses the abstraction |
|
`transformer.h` to encapsulate all the decoder layers. |
|
""" |
|
device_map = { |
|
"transformer.word_embeddings": "cpu", |
|
"transformer.word_embeddings_layernorm": "cpu", |
|
"lm_head": "cpu", |
|
"transformer.h": 0, |
|
"transformer.ln_f": 1, |
|
} |
|
bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True) |
|
|
|
|
|
model_8bit = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, |
|
device_map=device_map, |
|
quantization_config=bnb_config, |
|
) |
|
|
|
|
|
self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu"}) |
|
|
|
self.check_inference_correctness(model_8bit) |
|
|
|
def test_cpu_gpu_disk_loading_custom_device_map(self): |
|
r""" |
|
A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. |
|
This time we also add `disk` on the device_map. |
|
""" |
|
device_map = { |
|
"transformer.word_embeddings": 0, |
|
"transformer.word_embeddings_layernorm": "cpu", |
|
"lm_head": 0, |
|
"transformer.h": 1, |
|
"transformer.ln_f": "disk", |
|
} |
|
bnb_config = BitsAndBytesConfig(llm_int8_enable_fp32_cpu_offload=True) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
|
|
model_8bit = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, |
|
device_map=device_map, |
|
quantization_config=bnb_config, |
|
offload_folder=tmpdirname, |
|
) |
|
|
|
|
|
self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"}) |
|
|
|
self.check_inference_correctness(model_8bit) |
|
|
|
def test_cpu_gpu_disk_loading_custom_device_map_kwargs(self): |
|
r""" |
|
A test to check is dispatching a model on cpu & gpu works correctly using a custom `device_map`. |
|
This time we also add `disk` on the device_map - using the kwargs directly instead of the quantization config |
|
""" |
|
device_map = { |
|
"transformer.word_embeddings": 0, |
|
"transformer.word_embeddings_layernorm": "cpu", |
|
"lm_head": 0, |
|
"transformer.h": 1, |
|
"transformer.ln_f": "disk", |
|
} |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
|
|
model_8bit = AutoModelForCausalLM.from_pretrained( |
|
self.model_name, |
|
device_map=device_map, |
|
llm_int8_enable_fp32_cpu_offload=True, |
|
offload_folder=tmpdirname, |
|
) |
|
|
|
|
|
self.assertEqual(set(model_8bit.hf_device_map.values()), {0, 1, "cpu", "disk"}) |
|
|
|
self.check_inference_correctness(model_8bit) |
|
|
|
|
|
class MixedInt8TestTraining(BaseMixedInt8Test): |
|
def setUp(self): |
|
self.model_name = "facebook/opt-350m" |
|
super().setUp() |
|
|
|
def test_training(self): |
|
if version.parse(importlib_metadata.version("bitsandbytes")) < version.parse("0.37.0"): |
|
return |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(self.model_name, load_in_8bit=True, device_map="auto") |
|
|
|
for param in model.parameters(): |
|
param.requires_grad = False |
|
if param.ndim == 1: |
|
|
|
param.data = param.data.to(torch.float32) |
|
|
|
|
|
for _, module in model.named_modules(): |
|
if "OPTAttention" in repr(type(module)): |
|
module.q_proj = LoRALayer(module.q_proj, rank=16) |
|
module.k_proj = LoRALayer(module.k_proj, rank=16) |
|
module.v_proj = LoRALayer(module.v_proj, rank=16) |
|
|
|
|
|
batch = self.tokenizer("Test batch ", return_tensors="pt").to(0) |
|
|
|
|
|
with torch.cuda.amp.autocast(): |
|
out = model.forward(**batch) |
|
out.logits.norm().backward() |
|
|
|
for module in model.modules(): |
|
if isinstance(module, LoRALayer): |
|
self.assertTrue(module.adapter[1].weight.grad is not None) |
|
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0) |
|
elif isinstance(module, nn.Embedding): |
|
self.assertTrue(module.weight.grad is None) |
|
|