|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from transformers import ( |
|
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, |
|
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, |
|
AutoModelForTokenClassification, |
|
AutoTokenizer, |
|
TokenClassificationPipeline, |
|
pipeline, |
|
) |
|
from transformers.pipelines import AggregationStrategy, TokenClassificationArgumentHandler |
|
from transformers.testing_utils import ( |
|
is_pipeline_test, |
|
nested_simplify, |
|
require_tf, |
|
require_torch, |
|
require_torch_gpu, |
|
slow, |
|
) |
|
|
|
from .test_pipelines_common import ANY |
|
|
|
|
|
VALID_INPUTS = ["A simple string", ["list of strings", "A simple string that is quite a bit longer"]] |
|
|
|
|
|
@is_pipeline_test |
|
class TokenClassificationPipelineTests(unittest.TestCase): |
|
model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING |
|
tf_model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING |
|
|
|
def get_test_pipeline(self, model, tokenizer, processor): |
|
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer) |
|
return token_classifier, ["A simple string", "A simple string that is quite a bit longer"] |
|
|
|
def run_pipeline_test(self, token_classifier, _): |
|
model = token_classifier.model |
|
tokenizer = token_classifier.tokenizer |
|
if not tokenizer.is_fast: |
|
return |
|
|
|
outputs = token_classifier("A simple string") |
|
self.assertIsInstance(outputs, list) |
|
n = len(outputs) |
|
self.assertEqual( |
|
nested_simplify(outputs), |
|
[ |
|
{ |
|
"entity": ANY(str), |
|
"score": ANY(float), |
|
"start": ANY(int), |
|
"end": ANY(int), |
|
"index": ANY(int), |
|
"word": ANY(str), |
|
} |
|
for i in range(n) |
|
], |
|
) |
|
outputs = token_classifier(["list of strings", "A simple string that is quite a bit longer"]) |
|
self.assertIsInstance(outputs, list) |
|
self.assertEqual(len(outputs), 2) |
|
n = len(outputs[0]) |
|
m = len(outputs[1]) |
|
|
|
self.assertEqual( |
|
nested_simplify(outputs), |
|
[ |
|
[ |
|
{ |
|
"entity": ANY(str), |
|
"score": ANY(float), |
|
"start": ANY(int), |
|
"end": ANY(int), |
|
"index": ANY(int), |
|
"word": ANY(str), |
|
} |
|
for i in range(n) |
|
], |
|
[ |
|
{ |
|
"entity": ANY(str), |
|
"score": ANY(float), |
|
"start": ANY(int), |
|
"end": ANY(int), |
|
"index": ANY(int), |
|
"word": ANY(str), |
|
} |
|
for i in range(m) |
|
], |
|
], |
|
) |
|
|
|
self.run_aggregation_strategy(model, tokenizer) |
|
|
|
def run_aggregation_strategy(self, model, tokenizer): |
|
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="simple") |
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE) |
|
outputs = token_classifier("A simple string") |
|
self.assertIsInstance(outputs, list) |
|
n = len(outputs) |
|
self.assertEqual( |
|
nested_simplify(outputs), |
|
[ |
|
{ |
|
"entity_group": ANY(str), |
|
"score": ANY(float), |
|
"start": ANY(int), |
|
"end": ANY(int), |
|
"word": ANY(str), |
|
} |
|
for i in range(n) |
|
], |
|
) |
|
|
|
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="first") |
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST) |
|
outputs = token_classifier("A simple string") |
|
self.assertIsInstance(outputs, list) |
|
n = len(outputs) |
|
self.assertEqual( |
|
nested_simplify(outputs), |
|
[ |
|
{ |
|
"entity_group": ANY(str), |
|
"score": ANY(float), |
|
"start": ANY(int), |
|
"end": ANY(int), |
|
"word": ANY(str), |
|
} |
|
for i in range(n) |
|
], |
|
) |
|
|
|
token_classifier = TokenClassificationPipeline(model=model, tokenizer=tokenizer, aggregation_strategy="max") |
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.MAX) |
|
outputs = token_classifier("A simple string") |
|
self.assertIsInstance(outputs, list) |
|
n = len(outputs) |
|
self.assertEqual( |
|
nested_simplify(outputs), |
|
[ |
|
{ |
|
"entity_group": ANY(str), |
|
"score": ANY(float), |
|
"start": ANY(int), |
|
"end": ANY(int), |
|
"word": ANY(str), |
|
} |
|
for i in range(n) |
|
], |
|
) |
|
|
|
token_classifier = TokenClassificationPipeline( |
|
model=model, tokenizer=tokenizer, aggregation_strategy="average" |
|
) |
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.AVERAGE) |
|
outputs = token_classifier("A simple string") |
|
self.assertIsInstance(outputs, list) |
|
n = len(outputs) |
|
self.assertEqual( |
|
nested_simplify(outputs), |
|
[ |
|
{ |
|
"entity_group": ANY(str), |
|
"score": ANY(float), |
|
"start": ANY(int), |
|
"end": ANY(int), |
|
"word": ANY(str), |
|
} |
|
for i in range(n) |
|
], |
|
) |
|
|
|
with self.assertWarns(UserWarning): |
|
token_classifier = pipeline(task="ner", model=model, tokenizer=tokenizer, grouped_entities=True) |
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.SIMPLE) |
|
with self.assertWarns(UserWarning): |
|
token_classifier = pipeline( |
|
task="ner", model=model, tokenizer=tokenizer, grouped_entities=True, ignore_subwords=True |
|
) |
|
self.assertEqual(token_classifier._postprocess_params["aggregation_strategy"], AggregationStrategy.FIRST) |
|
|
|
@slow |
|
@require_torch |
|
def test_chunking(self): |
|
NER_MODEL = "elastic/distilbert-base-uncased-finetuned-conll03-english" |
|
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL) |
|
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True) |
|
tokenizer.model_max_length = 10 |
|
stride = 5 |
|
sentence = ( |
|
"Hugging Face, Inc. is a French company that develops tools for building applications using machine learning. " |
|
"The company, based in New York City was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf." |
|
) |
|
|
|
token_classifier = TokenClassificationPipeline( |
|
model=model, tokenizer=tokenizer, aggregation_strategy="simple", stride=stride |
|
) |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output), |
|
[ |
|
{"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18}, |
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30}, |
|
{"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144}, |
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174}, |
|
{"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205}, |
|
{"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222}, |
|
{"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239}, |
|
], |
|
) |
|
|
|
token_classifier = TokenClassificationPipeline( |
|
model=model, tokenizer=tokenizer, aggregation_strategy="first", stride=stride |
|
) |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output), |
|
[ |
|
{"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18}, |
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30}, |
|
{"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144}, |
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174}, |
|
{"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205}, |
|
{"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222}, |
|
{"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239}, |
|
], |
|
) |
|
|
|
token_classifier = TokenClassificationPipeline( |
|
model=model, tokenizer=tokenizer, aggregation_strategy="max", stride=stride |
|
) |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output), |
|
[ |
|
{"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18}, |
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30}, |
|
{"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144}, |
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174}, |
|
{"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205}, |
|
{"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222}, |
|
{"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239}, |
|
], |
|
) |
|
|
|
token_classifier = TokenClassificationPipeline( |
|
model=model, tokenizer=tokenizer, aggregation_strategy="average", stride=stride |
|
) |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output), |
|
[ |
|
{"entity_group": "ORG", "score": 0.978, "word": "hugging face, inc.", "start": 0, "end": 18}, |
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 24, "end": 30}, |
|
{"entity_group": "LOC", "score": 0.997, "word": "new york city", "start": 131, "end": 144}, |
|
{"entity_group": "MISC", "score": 0.999, "word": "french", "start": 168, "end": 174}, |
|
{"entity_group": "PER", "score": 0.999, "word": "clement delangue", "start": 189, "end": 205}, |
|
{"entity_group": "PER", "score": 0.999, "word": "julien chaumond", "start": 207, "end": 222}, |
|
{"entity_group": "PER", "score": 0.999, "word": "thomas wolf", "start": 228, "end": 239}, |
|
], |
|
) |
|
|
|
@require_torch |
|
def test_chunking_fast(self): |
|
|
|
|
|
|
|
|
|
pipe = pipeline(model="hf-internal-testing/tiny-bert-for-token-classification") |
|
sentence = "The company, based in New York City was founded in 2016 by French entrepreneurs" |
|
|
|
results = pipe(sentence, aggregation_strategy="first") |
|
|
|
self.assertEqual( |
|
nested_simplify(results), |
|
[ |
|
|
|
{"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"}, |
|
{"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"}, |
|
], |
|
) |
|
|
|
|
|
pipe.tokenizer.model_max_length = 12 |
|
self.assertEqual( |
|
pipe.tokenizer.decode(pipe.tokenizer.encode(sentence, truncation=True)), |
|
"[CLS] the company, based in new york city was [SEP]", |
|
) |
|
|
|
stride = 4 |
|
results = pipe(sentence, aggregation_strategy="first", stride=stride) |
|
self.assertEqual( |
|
nested_simplify(results), |
|
[ |
|
{"end": 39, "entity_group": "MISC", "score": 0.115, "start": 31, "word": "city was"}, |
|
|
|
|
|
{"end": 58, "entity_group": "MISC", "score": 0.115, "start": 56, "word": "by"}, |
|
{"end": 79, "entity_group": "MISC", "score": 0.115, "start": 66, "word": "entrepreneurs"}, |
|
], |
|
) |
|
|
|
@require_torch |
|
@slow |
|
def test_spanish_bert(self): |
|
|
|
NER_MODEL = "mrm8488/bert-spanish-cased-finetuned-ner" |
|
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL) |
|
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True) |
|
sentence = """Consuelo Araújo Noguera, ministra de cultura del presidente Andrés Pastrana (1998.2002) fue asesinada por las Farc luego de haber permanecido secuestrada por algunos meses.""" |
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer) |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output[:3]), |
|
[ |
|
{"entity": "B-PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4, "index": 1}, |
|
{"entity": "B-PER", "score": 0.803, "word": "##uelo", "start": 4, "end": 8, "index": 2}, |
|
{"entity": "I-PER", "score": 0.999, "word": "Ara", "start": 9, "end": 12, "index": 3}, |
|
], |
|
) |
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output[:3]), |
|
[ |
|
{"entity_group": "PER", "score": 0.999, "word": "Cons", "start": 0, "end": 4}, |
|
{"entity_group": "PER", "score": 0.966, "word": "##uelo Araújo Noguera", "start": 4, "end": 23}, |
|
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75}, |
|
], |
|
) |
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first") |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output[:3]), |
|
[ |
|
{"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23}, |
|
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75}, |
|
{"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114}, |
|
], |
|
) |
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max") |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output[:3]), |
|
[ |
|
{"entity_group": "PER", "score": 0.999, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23}, |
|
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75}, |
|
{"entity_group": "ORG", "score": 0.999, "word": "Farc", "start": 110, "end": 114}, |
|
], |
|
) |
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average") |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output[:3]), |
|
[ |
|
{"entity_group": "PER", "score": 0.966, "word": "Consuelo Araújo Noguera", "start": 0, "end": 23}, |
|
{"entity_group": "PER", "score": 1.0, "word": "Andrés Pastrana", "start": 60, "end": 75}, |
|
{"entity_group": "ORG", "score": 0.542, "word": "Farc", "start": 110, "end": 114}, |
|
], |
|
) |
|
|
|
@require_torch_gpu |
|
@slow |
|
def test_gpu(self): |
|
sentence = "This is dummy sentence" |
|
ner = pipeline( |
|
"token-classification", |
|
device=0, |
|
aggregation_strategy=AggregationStrategy.SIMPLE, |
|
) |
|
|
|
output = ner(sentence) |
|
self.assertEqual(nested_simplify(output), []) |
|
|
|
@require_torch |
|
@slow |
|
def test_dbmdz_english(self): |
|
|
|
NER_MODEL = "dbmdz/bert-large-cased-finetuned-conll03-english" |
|
model = AutoModelForTokenClassification.from_pretrained(NER_MODEL) |
|
tokenizer = AutoTokenizer.from_pretrained(NER_MODEL, use_fast=True) |
|
sentence = """Enzo works at the UN""" |
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer) |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output), |
|
[ |
|
{"entity": "I-PER", "score": 0.998, "word": "En", "start": 0, "end": 2, "index": 1}, |
|
{"entity": "I-PER", "score": 0.997, "word": "##zo", "start": 2, "end": 4, "index": 2}, |
|
{"entity": "I-ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20, "index": 6}, |
|
], |
|
) |
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple") |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output), |
|
[ |
|
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4}, |
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20}, |
|
], |
|
) |
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="first") |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output[:3]), |
|
[ |
|
{"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4}, |
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20}, |
|
], |
|
) |
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="max") |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output[:3]), |
|
[ |
|
{"entity_group": "PER", "score": 0.998, "word": "Enzo", "start": 0, "end": 4}, |
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20}, |
|
], |
|
) |
|
|
|
token_classifier = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="average") |
|
output = token_classifier(sentence) |
|
self.assertEqual( |
|
nested_simplify(output), |
|
[ |
|
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4}, |
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 18, "end": 20}, |
|
], |
|
) |
|
|
|
@require_torch |
|
@slow |
|
def test_aggregation_strategy_byte_level_tokenizer(self): |
|
sentence = "Groenlinks praat over Schiphol." |
|
ner = pipeline("ner", model="xlm-roberta-large-finetuned-conll02-dutch", aggregation_strategy="max") |
|
self.assertEqual( |
|
nested_simplify(ner(sentence)), |
|
[ |
|
{"end": 10, "entity_group": "ORG", "score": 0.994, "start": 0, "word": "Groenlinks"}, |
|
{"entity_group": "LOC", "score": 1.0, "word": "Schiphol.", "start": 22, "end": 31}, |
|
], |
|
) |
|
|
|
@require_torch |
|
def test_aggregation_strategy_no_b_i_prefix(self): |
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) |
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") |
|
|
|
token_classifier.model.config.id2label = {0: "O", 1: "MISC", 2: "PER", 3: "ORG", 4: "LOC"} |
|
example = [ |
|
{ |
|
|
|
"scores": np.array([0, 0, 0, 0, 0.9968166351318359]), |
|
"index": 1, |
|
"is_subword": False, |
|
"word": "En", |
|
"start": 0, |
|
"end": 2, |
|
}, |
|
{ |
|
|
|
"scores": np.array([0, 0, 0, 0, 0.9957635998725891]), |
|
"index": 2, |
|
"is_subword": True, |
|
"word": "##zo", |
|
"start": 2, |
|
"end": 4, |
|
}, |
|
{ |
|
|
|
"scores": np.array([0, 0, 0, 0.9986497163772583, 0]), |
|
|
|
"index": 7, |
|
"word": "UN", |
|
"is_subword": False, |
|
"start": 11, |
|
"end": 13, |
|
}, |
|
] |
|
self.assertEqual( |
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)), |
|
[ |
|
{"end": 2, "entity": "LOC", "score": 0.997, "start": 0, "word": "En", "index": 1}, |
|
{"end": 4, "entity": "LOC", "score": 0.996, "start": 2, "word": "##zo", "index": 2}, |
|
{"end": 13, "entity": "ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7}, |
|
], |
|
) |
|
self.assertEqual( |
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)), |
|
[ |
|
{"entity_group": "LOC", "score": 0.996, "word": "Enzo", "start": 0, "end": 4}, |
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, |
|
], |
|
) |
|
|
|
@require_torch |
|
def test_aggregation_strategy(self): |
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) |
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") |
|
|
|
self.assertEqual( |
|
token_classifier.model.config.id2label, |
|
{0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"}, |
|
) |
|
example = [ |
|
{ |
|
|
|
"scores": np.array([0, 0, 0, 0, 0.9968166351318359, 0, 0, 0]), |
|
"index": 1, |
|
"is_subword": False, |
|
"word": "En", |
|
"start": 0, |
|
"end": 2, |
|
}, |
|
{ |
|
|
|
"scores": np.array([0, 0, 0, 0, 0.9957635998725891, 0, 0, 0]), |
|
"index": 2, |
|
"is_subword": True, |
|
"word": "##zo", |
|
"start": 2, |
|
"end": 4, |
|
}, |
|
{ |
|
|
|
"scores": np.array([0, 0, 0, 0, 0, 0.9986497163772583, 0, 0, ]), |
|
|
|
"index": 7, |
|
"word": "UN", |
|
"is_subword": False, |
|
"start": 11, |
|
"end": 13, |
|
}, |
|
] |
|
self.assertEqual( |
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.NONE)), |
|
[ |
|
{"end": 2, "entity": "I-PER", "score": 0.997, "start": 0, "word": "En", "index": 1}, |
|
{"end": 4, "entity": "I-PER", "score": 0.996, "start": 2, "word": "##zo", "index": 2}, |
|
{"end": 13, "entity": "B-ORG", "score": 0.999, "start": 11, "word": "UN", "index": 7}, |
|
], |
|
) |
|
self.assertEqual( |
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.SIMPLE)), |
|
[ |
|
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4}, |
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, |
|
], |
|
) |
|
self.assertEqual( |
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.FIRST)), |
|
[ |
|
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4}, |
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, |
|
], |
|
) |
|
self.assertEqual( |
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.MAX)), |
|
[ |
|
{"entity_group": "PER", "score": 0.997, "word": "Enzo", "start": 0, "end": 4}, |
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, |
|
], |
|
) |
|
self.assertEqual( |
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)), |
|
[ |
|
{"entity_group": "PER", "score": 0.996, "word": "Enzo", "start": 0, "end": 4}, |
|
{"entity_group": "ORG", "score": 0.999, "word": "UN", "start": 11, "end": 13}, |
|
], |
|
) |
|
|
|
@require_torch |
|
def test_aggregation_strategy_example2(self): |
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) |
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") |
|
|
|
self.assertEqual( |
|
token_classifier.model.config.id2label, |
|
{0: "O", 1: "B-MISC", 2: "I-MISC", 3: "B-PER", 4: "I-PER", 5: "B-ORG", 6: "I-ORG", 7: "B-LOC", 8: "I-LOC"}, |
|
) |
|
example = [ |
|
{ |
|
|
|
"scores": np.array([0, 0.55, 0, 0.45, 0, 0, 0, 0, 0, 0]), |
|
"is_subword": False, |
|
"index": 1, |
|
"word": "Ra", |
|
"start": 0, |
|
"end": 2, |
|
}, |
|
{ |
|
"scores": np.array([0, 0, 0, 0.2, 0, 0, 0, 0.8, 0, 0]), |
|
"is_subword": True, |
|
"word": "##ma", |
|
"start": 2, |
|
"end": 4, |
|
"index": 2, |
|
}, |
|
{ |
|
|
|
|
|
|
|
"scores": np.array([0, 0, 0, 0.4, 0, 0, 0.6, 0, 0, 0]), |
|
"is_subword": True, |
|
"word": "##zotti", |
|
"start": 11, |
|
"end": 13, |
|
"index": 3, |
|
}, |
|
] |
|
self.assertEqual( |
|
token_classifier.aggregate(example, AggregationStrategy.NONE), |
|
[ |
|
{"end": 2, "entity": "B-MISC", "score": 0.55, "start": 0, "word": "Ra", "index": 1}, |
|
{"end": 4, "entity": "B-LOC", "score": 0.8, "start": 2, "word": "##ma", "index": 2}, |
|
{"end": 13, "entity": "I-ORG", "score": 0.6, "start": 11, "word": "##zotti", "index": 3}, |
|
], |
|
) |
|
|
|
self.assertEqual( |
|
token_classifier.aggregate(example, AggregationStrategy.FIRST), |
|
[{"entity_group": "MISC", "score": 0.55, "word": "Ramazotti", "start": 0, "end": 13}], |
|
) |
|
self.assertEqual( |
|
token_classifier.aggregate(example, AggregationStrategy.MAX), |
|
[{"entity_group": "LOC", "score": 0.8, "word": "Ramazotti", "start": 0, "end": 13}], |
|
) |
|
self.assertEqual( |
|
nested_simplify(token_classifier.aggregate(example, AggregationStrategy.AVERAGE)), |
|
[{"entity_group": "PER", "score": 0.35, "word": "Ramazotti", "start": 0, "end": 13}], |
|
) |
|
|
|
@require_torch |
|
@slow |
|
def test_aggregation_strategy_offsets_with_leading_space(self): |
|
sentence = "We're from New York" |
|
model_name = "brandon25/deberta-base-finetuned-ner" |
|
ner = pipeline("ner", model=model_name, ignore_labels=[], aggregation_strategy="max") |
|
self.assertEqual( |
|
nested_simplify(ner(sentence)), |
|
[ |
|
{"entity_group": "O", "score": 1.0, "word": " We're from", "start": 0, "end": 10}, |
|
{"entity_group": "LOC", "score": 1.0, "word": " New York", "start": 10, "end": 19}, |
|
], |
|
) |
|
|
|
@require_torch |
|
def test_gather_pre_entities(self): |
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) |
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") |
|
|
|
sentence = "Hello there" |
|
|
|
tokens = tokenizer( |
|
sentence, |
|
return_attention_mask=False, |
|
return_tensors="pt", |
|
truncation=True, |
|
return_special_tokens_mask=True, |
|
return_offsets_mapping=True, |
|
) |
|
offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0] |
|
special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0] |
|
input_ids = tokens["input_ids"].numpy()[0] |
|
|
|
scores = np.array([[1, 0, 0], [0.1, 0.3, 0.6], [0.8, 0.1, 0.1]]) |
|
|
|
pre_entities = token_classifier.gather_pre_entities( |
|
sentence, |
|
input_ids, |
|
scores, |
|
offset_mapping, |
|
special_tokens_mask, |
|
aggregation_strategy=AggregationStrategy.NONE, |
|
) |
|
self.assertEqual( |
|
nested_simplify(pre_entities), |
|
[ |
|
{"word": "Hello", "scores": [0.1, 0.3, 0.6], "start": 0, "end": 5, "is_subword": False, "index": 1}, |
|
{ |
|
"word": "there", |
|
"scores": [0.8, 0.1, 0.1], |
|
"index": 2, |
|
"start": 6, |
|
"end": 11, |
|
"is_subword": False, |
|
}, |
|
], |
|
) |
|
|
|
@require_torch |
|
def test_word_heuristic_leading_space(self): |
|
model_name = "hf-internal-testing/tiny-random-deberta-v2" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) |
|
token_classifier = pipeline(task="ner", model=model_name, tokenizer=tokenizer, framework="pt") |
|
|
|
sentence = "I play the theremin" |
|
|
|
tokens = tokenizer( |
|
sentence, |
|
return_attention_mask=False, |
|
return_tensors="pt", |
|
return_special_tokens_mask=True, |
|
return_offsets_mapping=True, |
|
) |
|
offset_mapping = tokens.pop("offset_mapping").cpu().numpy()[0] |
|
special_tokens_mask = tokens.pop("special_tokens_mask").cpu().numpy()[0] |
|
input_ids = tokens["input_ids"].numpy()[0] |
|
scores = np.array([[1, 0] for _ in input_ids]) |
|
|
|
pre_entities = token_classifier.gather_pre_entities( |
|
sentence, |
|
input_ids, |
|
scores, |
|
offset_mapping, |
|
special_tokens_mask, |
|
aggregation_strategy=AggregationStrategy.FIRST, |
|
) |
|
|
|
|
|
self.assertEqual( |
|
[(entity["word"], entity["is_subword"]) for entity in pre_entities], |
|
[("▁I", False), ("▁play", False), ("▁the", False), ("▁there", False), ("min", True)], |
|
) |
|
|
|
@require_tf |
|
def test_tf_only(self): |
|
model_name = "hf-internal-testing/tiny-random-bert-tf-only" |
|
|
|
token_classifier = pipeline(task="ner", model=model_name) |
|
self.assertEqual(token_classifier.framework, "tf") |
|
|
|
@require_tf |
|
def test_small_model_tf(self): |
|
model_name = "hf-internal-testing/tiny-bert-for-token-classification" |
|
token_classifier = pipeline(task="token-classification", model=model_name, framework="tf") |
|
outputs = token_classifier("This is a test !") |
|
self.assertEqual( |
|
nested_simplify(outputs), |
|
[ |
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4}, |
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7}, |
|
], |
|
) |
|
|
|
@require_torch |
|
def test_no_offset_tokenizer(self): |
|
model_name = "hf-internal-testing/tiny-bert-for-token-classification" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) |
|
token_classifier = pipeline(task="token-classification", model=model_name, tokenizer=tokenizer, framework="pt") |
|
outputs = token_classifier("This is a test !") |
|
self.assertEqual( |
|
nested_simplify(outputs), |
|
[ |
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": None, "end": None}, |
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": None, "end": None}, |
|
], |
|
) |
|
|
|
@require_torch |
|
def test_small_model_pt(self): |
|
model_name = "hf-internal-testing/tiny-bert-for-token-classification" |
|
token_classifier = pipeline(task="token-classification", model=model_name, framework="pt") |
|
outputs = token_classifier("This is a test !") |
|
self.assertEqual( |
|
nested_simplify(outputs), |
|
[ |
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4}, |
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7}, |
|
], |
|
) |
|
|
|
token_classifier = pipeline( |
|
task="token-classification", model=model_name, framework="pt", ignore_labels=["O", "I-MISC"] |
|
) |
|
outputs = token_classifier("This is a test !") |
|
self.assertEqual( |
|
nested_simplify(outputs), |
|
[], |
|
) |
|
|
|
token_classifier = pipeline(task="token-classification", model=model_name, framework="pt") |
|
|
|
outputs = token_classifier( |
|
"This is a test !", offset_mapping=[(0, 0), (0, 1), (0, 2), (0, 0), (0, 0), (0, 0), (0, 0)] |
|
) |
|
self.assertEqual( |
|
nested_simplify(outputs), |
|
[ |
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 1}, |
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 0, "end": 2}, |
|
], |
|
) |
|
|
|
|
|
sentences = ["This is a test !", "Another test this is with longer sentence"] |
|
outputs = token_classifier(sentences) |
|
outputs_batched = token_classifier(sentences, batch_size=2) |
|
|
|
self.assertEqual(nested_simplify(outputs_batched), nested_simplify(outputs)) |
|
self.assertEqual( |
|
nested_simplify(outputs_batched), |
|
[ |
|
[ |
|
{"entity": "I-MISC", "score": 0.115, "index": 1, "word": "this", "start": 0, "end": 4}, |
|
{"entity": "I-MISC", "score": 0.115, "index": 2, "word": "is", "start": 5, "end": 7}, |
|
], |
|
[], |
|
], |
|
) |
|
|
|
@require_torch |
|
def test_pt_ignore_subwords_slow_tokenizer_raises(self): |
|
model_name = "sshleifer/tiny-dbmdz-bert-large-cased-finetuned-conll03-english" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) |
|
|
|
with self.assertRaises(ValueError): |
|
pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.FIRST) |
|
with self.assertRaises(ValueError): |
|
pipeline( |
|
task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.AVERAGE |
|
) |
|
with self.assertRaises(ValueError): |
|
pipeline(task="ner", model=model_name, tokenizer=tokenizer, aggregation_strategy=AggregationStrategy.MAX) |
|
|
|
@slow |
|
@require_torch |
|
def test_simple(self): |
|
token_classifier = pipeline(task="ner", model="dslim/bert-base-NER", grouped_entities=True) |
|
sentence = "Hello Sarah Jessica Parker who Jessica lives in New York" |
|
sentence2 = "This is a simple test" |
|
output = token_classifier(sentence) |
|
|
|
output_ = nested_simplify(output) |
|
|
|
self.assertEqual( |
|
output_, |
|
[ |
|
{ |
|
"entity_group": "PER", |
|
"score": 0.996, |
|
"word": "Sarah Jessica Parker", |
|
"start": 6, |
|
"end": 26, |
|
}, |
|
{"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38}, |
|
{"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56}, |
|
], |
|
) |
|
|
|
output = token_classifier([sentence, sentence2]) |
|
output_ = nested_simplify(output) |
|
|
|
self.assertEqual( |
|
output_, |
|
[ |
|
[ |
|
{"entity_group": "PER", "score": 0.996, "word": "Sarah Jessica Parker", "start": 6, "end": 26}, |
|
{"entity_group": "PER", "score": 0.977, "word": "Jessica", "start": 31, "end": 38}, |
|
{"entity_group": "LOC", "score": 0.999, "word": "New York", "start": 48, "end": 56}, |
|
], |
|
[], |
|
], |
|
) |
|
|
|
|
|
class TokenClassificationArgumentHandlerTestCase(unittest.TestCase): |
|
def setUp(self): |
|
self.args_parser = TokenClassificationArgumentHandler() |
|
|
|
def test_simple(self): |
|
string = "This is a simple input" |
|
|
|
inputs, offset_mapping = self.args_parser(string) |
|
self.assertEqual(inputs, [string]) |
|
self.assertEqual(offset_mapping, None) |
|
|
|
inputs, offset_mapping = self.args_parser([string, string]) |
|
self.assertEqual(inputs, [string, string]) |
|
self.assertEqual(offset_mapping, None) |
|
|
|
inputs, offset_mapping = self.args_parser(string, offset_mapping=[(0, 1), (1, 2)]) |
|
self.assertEqual(inputs, [string]) |
|
self.assertEqual(offset_mapping, [[(0, 1), (1, 2)]]) |
|
|
|
inputs, offset_mapping = self.args_parser( |
|
[string, string], offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]] |
|
) |
|
self.assertEqual(inputs, [string, string]) |
|
self.assertEqual(offset_mapping, [[(0, 1), (1, 2)], [(0, 2), (2, 3)]]) |
|
|
|
def test_errors(self): |
|
string = "This is a simple input" |
|
|
|
|
|
with self.assertRaises(TypeError): |
|
self.args_parser(string, string, offset_mapping=[[(0, 1), (1, 2)]]) |
|
|
|
|
|
with self.assertRaises(TypeError): |
|
self.args_parser(string, string, offset_mapping=[(0, 1), (1, 2)]) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
self.args_parser([string, string], offset_mapping=[[(0, 1), (1, 2)]]) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
self.args_parser([string, string], offset_mapping=[(0, 1), (1, 2)]) |
|
|
|
|
|
with self.assertRaises(ValueError): |
|
self.args_parser(string, offset_mapping=[[(0, 1), (1, 2)], [(0, 2), (2, 3)]]) |
|
|
|
|
|
with self.assertRaises(TypeError): |
|
self.args_parser(offset_mapping=[[(0, 1), (1, 2)]]) |
|
|