|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
import unittest |
|
|
|
|
|
git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) |
|
sys.path.append(os.path.join(git_repo_path, "utils")) |
|
|
|
import check_dummies |
|
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init |
|
|
|
|
|
|
|
check_dummies.PATH_TO_TRANSFORMERS = os.path.join(git_repo_path, "src", "transformers") |
|
|
|
DUMMY_CONSTANT = """ |
|
{0} = None |
|
""" |
|
|
|
DUMMY_CLASS = """ |
|
class {0}(metaclass=DummyObject): |
|
_backends = {1} |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, {1}) |
|
""" |
|
|
|
|
|
DUMMY_FUNCTION = """ |
|
def {0}(*args, **kwargs): |
|
requires_backends({0}, {1}) |
|
""" |
|
|
|
|
|
class CheckDummiesTester(unittest.TestCase): |
|
def test_find_backend(self): |
|
no_backend = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")') |
|
self.assertIsNone(no_backend) |
|
|
|
simple_backend = find_backend(" if not is_tokenizers_available():") |
|
self.assertEqual(simple_backend, "tokenizers") |
|
|
|
backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") |
|
self.assertEqual(backend_with_underscore, "tensorflow_text") |
|
|
|
double_backend = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):") |
|
self.assertEqual(double_backend, "sentencepiece_and_tokenizers") |
|
|
|
double_backend_with_underscore = find_backend( |
|
" if not (is_sentencepiece_available() and is_tensorflow_text_available()):" |
|
) |
|
self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") |
|
|
|
triple_backend = find_backend( |
|
" if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" |
|
) |
|
self.assertEqual(triple_backend, "sentencepiece_and_tokenizers_and_vision") |
|
|
|
def test_read_init(self): |
|
objects = read_init() |
|
|
|
self.assertIn("torch", objects) |
|
self.assertIn("tensorflow_text", objects) |
|
self.assertIn("sentencepiece_and_tokenizers", objects) |
|
|
|
|
|
self.assertIn("BertModel", objects["torch"]) |
|
self.assertIn("TFBertModel", objects["tf"]) |
|
self.assertIn("FlaxBertModel", objects["flax"]) |
|
self.assertIn("BertModel", objects["torch"]) |
|
self.assertIn("TFBertTokenizer", objects["tensorflow_text"]) |
|
self.assertIn("convert_slow_tokenizer", objects["sentencepiece_and_tokenizers"]) |
|
|
|
def test_create_dummy_object(self): |
|
dummy_constant = create_dummy_object("CONSTANT", "'torch'") |
|
self.assertEqual(dummy_constant, "\nCONSTANT = None\n") |
|
|
|
dummy_function = create_dummy_object("function", "'torch'") |
|
self.assertEqual( |
|
dummy_function, "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" |
|
) |
|
|
|
expected_dummy_class = """ |
|
class FakeClass(metaclass=DummyObject): |
|
_backends = 'torch' |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, 'torch') |
|
""" |
|
dummy_class = create_dummy_object("FakeClass", "'torch'") |
|
self.assertEqual(dummy_class, expected_dummy_class) |
|
|
|
def test_create_dummy_files(self): |
|
expected_dummy_pytorch_file = """# This file is autogenerated by the command `make fix-copies`, do not edit. |
|
from ..utils import DummyObject, requires_backends |
|
|
|
|
|
CONSTANT = None |
|
|
|
|
|
def function(*args, **kwargs): |
|
requires_backends(function, ["torch"]) |
|
|
|
|
|
class FakeClass(metaclass=DummyObject): |
|
_backends = ["torch"] |
|
|
|
def __init__(self, *args, **kwargs): |
|
requires_backends(self, ["torch"]) |
|
""" |
|
dummy_files = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]}) |
|
self.assertEqual(dummy_files["torch"], expected_dummy_pytorch_file) |
|
|