|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import sys |
|
import tempfile |
|
import unittest |
|
import unittest.mock as mock |
|
from pathlib import Path |
|
|
|
from huggingface_hub import HfFolder, delete_repo |
|
from requests.exceptions import HTTPError |
|
|
|
from transformers import AutoImageProcessor, ViTImageProcessor |
|
from transformers.testing_utils import ( |
|
TOKEN, |
|
USER, |
|
check_json_file_has_correct_format, |
|
get_tests_dir, |
|
is_staging_test, |
|
require_torch, |
|
require_vision, |
|
) |
|
from transformers.utils import is_torch_available, is_vision_available |
|
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent / "utils")) |
|
|
|
from test_module.custom_image_processing import CustomImageProcessor |
|
|
|
|
|
if is_torch_available(): |
|
import numpy as np |
|
import torch |
|
|
|
if is_vision_available(): |
|
from PIL import Image |
|
|
|
|
|
SAMPLE_IMAGE_PROCESSING_CONFIG_DIR = get_tests_dir("fixtures") |
|
|
|
|
|
def prepare_image_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False): |
|
"""This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True, |
|
or a list of PyTorch tensors if one specifies torchify=True. |
|
|
|
One can specify whether the images are of the same resolution or not. |
|
""" |
|
|
|
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" |
|
|
|
image_inputs = [] |
|
for i in range(image_processor_tester.batch_size): |
|
if equal_resolution: |
|
width = height = image_processor_tester.max_resolution |
|
else: |
|
|
|
min_resolution = image_processor_tester.min_resolution |
|
if getattr(image_processor_tester, "size_divisor", None): |
|
|
|
min_resolution = max(image_processor_tester.size_divisor, min_resolution) |
|
width, height = np.random.choice(np.arange(min_resolution, image_processor_tester.max_resolution), 2) |
|
image_inputs.append( |
|
np.random.randint(255, size=(image_processor_tester.num_channels, width, height), dtype=np.uint8) |
|
) |
|
|
|
if not numpify and not torchify: |
|
|
|
image_inputs = [Image.fromarray(np.moveaxis(image, 0, -1)) for image in image_inputs] |
|
|
|
if torchify: |
|
image_inputs = [torch.from_numpy(image) for image in image_inputs] |
|
|
|
return image_inputs |
|
|
|
|
|
def prepare_video(image_processor_tester, width=10, height=10, numpify=False, torchify=False): |
|
"""This function prepares a video as a list of PIL images/NumPy arrays/PyTorch tensors.""" |
|
|
|
video = [] |
|
for i in range(image_processor_tester.num_frames): |
|
video.append(np.random.randint(255, size=(image_processor_tester.num_channels, width, height), dtype=np.uint8)) |
|
|
|
if not numpify and not torchify: |
|
|
|
video = [Image.fromarray(np.moveaxis(frame, 0, -1)) for frame in video] |
|
|
|
if torchify: |
|
video = [torch.from_numpy(frame) for frame in video] |
|
|
|
return video |
|
|
|
|
|
def prepare_video_inputs(image_processor_tester, equal_resolution=False, numpify=False, torchify=False): |
|
"""This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if |
|
one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True. |
|
|
|
One can specify whether the videos are of the same resolution or not. |
|
""" |
|
|
|
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" |
|
|
|
video_inputs = [] |
|
for i in range(image_processor_tester.batch_size): |
|
if equal_resolution: |
|
width = height = image_processor_tester.max_resolution |
|
else: |
|
width, height = np.random.choice( |
|
np.arange(image_processor_tester.min_resolution, image_processor_tester.max_resolution), 2 |
|
) |
|
video = prepare_video( |
|
image_processor_tester=image_processor_tester, |
|
width=width, |
|
height=height, |
|
numpify=numpify, |
|
torchify=torchify, |
|
) |
|
video_inputs.append(video) |
|
|
|
return video_inputs |
|
|
|
|
|
class ImageProcessingSavingTestMixin: |
|
test_cast_dtype = None |
|
|
|
def test_image_processor_to_json_string(self): |
|
image_processor = self.image_processing_class(**self.image_processor_dict) |
|
obj = json.loads(image_processor.to_json_string()) |
|
for key, value in self.image_processor_dict.items(): |
|
self.assertEqual(obj[key], value) |
|
|
|
def test_image_processor_to_json_file(self): |
|
image_processor_first = self.image_processing_class(**self.image_processor_dict) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
json_file_path = os.path.join(tmpdirname, "image_processor.json") |
|
image_processor_first.to_json_file(json_file_path) |
|
image_processor_second = self.image_processing_class.from_json_file(json_file_path) |
|
|
|
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict()) |
|
|
|
def test_image_processor_from_and_save_pretrained(self): |
|
image_processor_first = self.image_processing_class(**self.image_processor_dict) |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
saved_file = image_processor_first.save_pretrained(tmpdirname)[0] |
|
check_json_file_has_correct_format(saved_file) |
|
image_processor_second = self.image_processing_class.from_pretrained(tmpdirname) |
|
|
|
self.assertEqual(image_processor_second.to_dict(), image_processor_first.to_dict()) |
|
|
|
def test_init_without_params(self): |
|
image_processor = self.image_processing_class() |
|
self.assertIsNotNone(image_processor) |
|
|
|
@require_torch |
|
@require_vision |
|
def test_cast_dtype_device(self): |
|
if self.test_cast_dtype is not None: |
|
|
|
image_processor = self.image_processing_class(**self.image_processor_dict) |
|
|
|
|
|
image_inputs = prepare_image_inputs(self.image_processor_tester, equal_resolution=False, torchify=True) |
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt") |
|
|
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) |
|
self.assertEqual(encoding.pixel_values.dtype, torch.float32) |
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt").to(torch.float16) |
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) |
|
self.assertEqual(encoding.pixel_values.dtype, torch.float16) |
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt").to("cpu", torch.bfloat16) |
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) |
|
self.assertEqual(encoding.pixel_values.dtype, torch.bfloat16) |
|
|
|
with self.assertRaises(TypeError): |
|
_ = image_processor(image_inputs, return_tensors="pt").to(torch.bfloat16, "cpu") |
|
|
|
|
|
encoding = image_processor(image_inputs, return_tensors="pt") |
|
encoding.update({"input_ids": torch.LongTensor([[1, 2, 3], [4, 5, 6]])}) |
|
encoding = encoding.to(torch.float16) |
|
|
|
self.assertEqual(encoding.pixel_values.device, torch.device("cpu")) |
|
self.assertEqual(encoding.pixel_values.dtype, torch.float16) |
|
self.assertEqual(encoding.input_ids.dtype, torch.long) |
|
|
|
|
|
class ImageProcessorUtilTester(unittest.TestCase): |
|
def test_cached_files_are_used_when_internet_is_down(self): |
|
|
|
response_mock = mock.Mock() |
|
response_mock.status_code = 500 |
|
response_mock.headers = {} |
|
response_mock.raise_for_status.side_effect = HTTPError |
|
response_mock.json.return_value = {} |
|
|
|
|
|
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") |
|
|
|
with mock.patch("requests.request", return_value=response_mock) as mock_head: |
|
_ = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit") |
|
|
|
mock_head.assert_called() |
|
|
|
def test_legacy_load_from_url(self): |
|
|
|
_ = ViTImageProcessor.from_pretrained( |
|
"https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" |
|
) |
|
|
|
|
|
@is_staging_test |
|
class ImageProcessorPushToHubTester(unittest.TestCase): |
|
@classmethod |
|
def setUpClass(cls): |
|
cls._token = TOKEN |
|
HfFolder.save_token(TOKEN) |
|
|
|
@classmethod |
|
def tearDownClass(cls): |
|
try: |
|
delete_repo(token=cls._token, repo_id="test-image-processor") |
|
except HTTPError: |
|
pass |
|
|
|
try: |
|
delete_repo(token=cls._token, repo_id="valid_org/test-image-processor-org") |
|
except HTTPError: |
|
pass |
|
|
|
try: |
|
delete_repo(token=cls._token, repo_id="test-dynamic-image-processor") |
|
except HTTPError: |
|
pass |
|
|
|
def test_push_to_hub(self): |
|
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR) |
|
image_processor.push_to_hub("test-image-processor", use_auth_token=self._token) |
|
|
|
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor") |
|
for k, v in image_processor.__dict__.items(): |
|
self.assertEqual(v, getattr(new_image_processor, k)) |
|
|
|
|
|
delete_repo(token=self._token, repo_id="test-image-processor") |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
image_processor.save_pretrained( |
|
tmp_dir, repo_id="test-image-processor", push_to_hub=True, use_auth_token=self._token |
|
) |
|
|
|
new_image_processor = ViTImageProcessor.from_pretrained(f"{USER}/test-image-processor") |
|
for k, v in image_processor.__dict__.items(): |
|
self.assertEqual(v, getattr(new_image_processor, k)) |
|
|
|
def test_push_to_hub_in_organization(self): |
|
image_processor = ViTImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR) |
|
image_processor.push_to_hub("valid_org/test-image-processor", use_auth_token=self._token) |
|
|
|
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor") |
|
for k, v in image_processor.__dict__.items(): |
|
self.assertEqual(v, getattr(new_image_processor, k)) |
|
|
|
|
|
delete_repo(token=self._token, repo_id="valid_org/test-image-processor") |
|
|
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
image_processor.save_pretrained( |
|
tmp_dir, repo_id="valid_org/test-image-processor-org", push_to_hub=True, use_auth_token=self._token |
|
) |
|
|
|
new_image_processor = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org") |
|
for k, v in image_processor.__dict__.items(): |
|
self.assertEqual(v, getattr(new_image_processor, k)) |
|
|
|
def test_push_to_hub_dynamic_image_processor(self): |
|
CustomImageProcessor.register_for_auto_class() |
|
image_processor = CustomImageProcessor.from_pretrained(SAMPLE_IMAGE_PROCESSING_CONFIG_DIR) |
|
|
|
image_processor.push_to_hub("test-dynamic-image-processor", use_auth_token=self._token) |
|
|
|
|
|
self.assertDictEqual( |
|
image_processor.auto_map, |
|
{"ImageProcessor": "custom_image_processing.CustomImageProcessor"}, |
|
) |
|
|
|
new_image_processor = AutoImageProcessor.from_pretrained( |
|
f"{USER}/test-dynamic-image-processor", trust_remote_code=True |
|
) |
|
|
|
self.assertEqual(new_image_processor.__class__.__name__, "CustomImageProcessor") |
|
|
|
def test_image_processor_from_pretrained_subfolder(self): |
|
with self.assertRaises(OSError): |
|
|
|
_ = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants") |
|
|
|
config = AutoImageProcessor.from_pretrained( |
|
"hf-internal-testing/stable-diffusion-all-variants", subfolder="feature_extractor" |
|
) |
|
|
|
self.assertIsNotNone(config) |
|
|