|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
import numpy as np |
|
|
|
from transformers import is_tf_available |
|
from transformers.testing_utils import require_tf |
|
|
|
|
|
if is_tf_available(): |
|
import tensorflow as tf |
|
|
|
from transformers.activations_tf import get_tf_activation |
|
|
|
|
|
@require_tf |
|
class TestTFActivations(unittest.TestCase): |
|
def test_gelu_10(self): |
|
x = tf.constant([-100, -1.0, -0.1, 0, 0.1, 1.0, 100.0]) |
|
gelu = get_tf_activation("gelu") |
|
gelu10 = get_tf_activation("gelu_10") |
|
|
|
y_gelu = gelu(x) |
|
y_gelu_10 = gelu10(x) |
|
|
|
clipped_mask = tf.where(y_gelu_10 < 10.0, 1.0, 0.0) |
|
|
|
self.assertEqual(tf.math.reduce_max(y_gelu_10).numpy().item(), 10.0) |
|
self.assertTrue(np.allclose(y_gelu * clipped_mask, y_gelu_10 * clipped_mask)) |
|
|
|
def test_get_activation(self): |
|
get_tf_activation("gelu") |
|
get_tf_activation("gelu_10") |
|
get_tf_activation("gelu_fast") |
|
get_tf_activation("gelu_new") |
|
get_tf_activation("glu") |
|
get_tf_activation("mish") |
|
get_tf_activation("quick_gelu") |
|
get_tf_activation("relu") |
|
get_tf_activation("sigmoid") |
|
get_tf_activation("silu") |
|
get_tf_activation("swish") |
|
get_tf_activation("tanh") |
|
with self.assertRaises(KeyError): |
|
get_tf_activation("bogus") |
|
with self.assertRaises(KeyError): |
|
get_tf_activation(None) |
|
|