|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Utility that checks the big table in the file docs/source/en/index.md and potentially updates it. |
|
|
|
Use from the root of the repo with: |
|
|
|
```bash |
|
python utils/check_inits.py |
|
``` |
|
|
|
for a check that will error in case of inconsistencies (used by `make repo-consistency`). |
|
|
|
To auto-fix issues run: |
|
|
|
```bash |
|
python utils/check_inits.py --fix_and_overwrite |
|
``` |
|
|
|
which is used by `make fix-copies`. |
|
""" |
|
import argparse |
|
import collections |
|
import os |
|
import re |
|
from typing import List |
|
|
|
from transformers.utils import direct_transformers_import |
|
|
|
|
|
|
|
|
|
TRANSFORMERS_PATH = "src/transformers" |
|
PATH_TO_DOCS = "docs/source/en" |
|
REPO_PATH = "." |
|
|
|
|
|
def _find_text_in_file(filename: str, start_prompt: str, end_prompt: str) -> str: |
|
""" |
|
Find the text in filename between two prompts. |
|
|
|
Args: |
|
filename (`str`): The file to search into. |
|
start_prompt (`str`): A string to look for at the start of the content searched. |
|
end_prompt (`str`): A string that will mark the end of the content to look for. |
|
|
|
Returns: |
|
`str`: The content between the prompts. |
|
""" |
|
with open(filename, "r", encoding="utf-8", newline="\n") as f: |
|
lines = f.readlines() |
|
|
|
|
|
start_index = 0 |
|
while not lines[start_index].startswith(start_prompt): |
|
start_index += 1 |
|
start_index += 1 |
|
|
|
|
|
end_index = start_index |
|
while not lines[end_index].startswith(end_prompt): |
|
end_index += 1 |
|
end_index -= 1 |
|
|
|
while len(lines[start_index]) <= 1: |
|
start_index += 1 |
|
while len(lines[end_index]) <= 1: |
|
end_index -= 1 |
|
end_index += 1 |
|
return "".join(lines[start_index:end_index]), start_index, end_index, lines |
|
|
|
|
|
|
|
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") |
|
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") |
|
|
|
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") |
|
|
|
|
|
|
|
transformers_module = direct_transformers_import(TRANSFORMERS_PATH) |
|
|
|
|
|
def camel_case_split(identifier: str) -> List[str]: |
|
""" |
|
Split a camel-cased name into words. |
|
|
|
Args: |
|
identifier (`str`): The camel-cased name to parse. |
|
|
|
Returns: |
|
`List[str]`: The list of words in the identifier (as seprated by capital letters). |
|
|
|
Example: |
|
|
|
```py |
|
>>> camel_case_split("CamelCasedClass") |
|
["Camel", "Cased", "Class"] |
|
``` |
|
""" |
|
|
|
matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier) |
|
return [m.group(0) for m in matches] |
|
|
|
|
|
def _center_text(text: str, width: int) -> str: |
|
""" |
|
Utility that will add spaces on the left and right of a text to make it centered for a given width. |
|
|
|
Args: |
|
text (`str`): The text to center. |
|
width (`int`): The desired length of the result. |
|
|
|
Returns: |
|
`str`: A text of length `width` with the original `text` in the middle. |
|
""" |
|
text_length = 2 if text == "✅" or text == "❌" else len(text) |
|
left_indent = (width - text_length) // 2 |
|
right_indent = width - text_length - left_indent |
|
return " " * left_indent + text + " " * right_indent |
|
|
|
|
|
SPECIAL_MODEL_NAME_LINK_MAPPING = { |
|
"Data2VecAudio": "[Data2VecAudio](model_doc/data2vec)", |
|
"Data2VecText": "[Data2VecText](model_doc/data2vec)", |
|
"Data2VecVision": "[Data2VecVision](model_doc/data2vec)", |
|
"DonutSwin": "[DonutSwin](model_doc/donut)", |
|
} |
|
|
|
MODEL_NAMES_WITH_SAME_CONFIG = { |
|
"BARThez": "BART", |
|
"BARTpho": "BART", |
|
"BertJapanese": "BERT", |
|
"BERTweet": "BERT", |
|
"BORT": "BERT", |
|
"ByT5": "T5", |
|
"CPM": "OpenAI GPT-2", |
|
"DePlot": "Pix2Struct", |
|
"DialoGPT": "OpenAI GPT-2", |
|
"DiT": "BEiT", |
|
"FLAN-T5": "T5", |
|
"FLAN-UL2": "T5", |
|
"HerBERT": "BERT", |
|
"LayoutXLM": "LayoutLMv2", |
|
"Llama2": "LLaMA", |
|
"MADLAD-400": "T5", |
|
"MatCha": "Pix2Struct", |
|
"mBART-50": "mBART", |
|
"Megatron-GPT2": "OpenAI GPT-2", |
|
"mLUKE": "LUKE", |
|
"MMS": "Wav2Vec2", |
|
"NLLB": "M2M100", |
|
"PhoBERT": "BERT", |
|
"T5v1.1": "T5", |
|
"TAPEX": "BART", |
|
"UL2": "T5", |
|
"Wav2Vec2Phoneme": "Wav2Vec2", |
|
"XLM-V": "XLM-RoBERTa", |
|
"XLS-R": "Wav2Vec2", |
|
"XLSR-Wav2Vec2": "Wav2Vec2", |
|
} |
|
MODEL_NAMES_TO_IGNORE = ["CLIPVisionModel", "SiglipVisionModel"] |
|
|
|
|
|
def get_model_table_from_auto_modules() -> str: |
|
""" |
|
Generates an up-to-date model table from the content of the auto modules. |
|
""" |
|
|
|
config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES |
|
model_name_to_config = { |
|
name: config_maping_names[code] |
|
for code, name in transformers_module.MODEL_NAMES_MAPPING.items() |
|
if code in config_maping_names |
|
} |
|
model_name_to_prefix = {name: config.replace("Config", "") for name, config in model_name_to_config.items()} |
|
|
|
|
|
pt_models = collections.defaultdict(bool) |
|
tf_models = collections.defaultdict(bool) |
|
flax_models = collections.defaultdict(bool) |
|
|
|
|
|
for attr_name in dir(transformers_module): |
|
lookup_dict = None |
|
if _re_tf_models.match(attr_name) is not None: |
|
lookup_dict = tf_models |
|
attr_name = _re_tf_models.match(attr_name).groups()[0] |
|
elif _re_flax_models.match(attr_name) is not None: |
|
lookup_dict = flax_models |
|
attr_name = _re_flax_models.match(attr_name).groups()[0] |
|
elif _re_pt_models.match(attr_name) is not None: |
|
lookup_dict = pt_models |
|
attr_name = _re_pt_models.match(attr_name).groups()[0] |
|
|
|
if lookup_dict is not None: |
|
while len(attr_name) > 0: |
|
if attr_name in model_name_to_prefix.values(): |
|
lookup_dict[attr_name] = True |
|
break |
|
|
|
attr_name = "".join(camel_case_split(attr_name)[:-1]) |
|
|
|
|
|
model_names = list(model_name_to_config.keys()) + list(MODEL_NAMES_WITH_SAME_CONFIG.keys()) |
|
|
|
|
|
model_names_mapping = transformers_module.models.auto.configuration_auto.MODEL_NAMES_MAPPING |
|
model_name_to_link_mapping = {value: f"[{value}](model_doc/{key})" for key, value in model_names_mapping.items()} |
|
|
|
model_name_to_link_mapping = { |
|
k: SPECIAL_MODEL_NAME_LINK_MAPPING[k] if k in SPECIAL_MODEL_NAME_LINK_MAPPING else v |
|
for k, v in model_name_to_link_mapping.items() |
|
} |
|
|
|
|
|
names_to_exclude = ["MaskFormerSwin", "TimmBackbone", "Speech2Text2"] |
|
model_names = [name for name in model_names if name not in names_to_exclude] |
|
model_names.sort(key=str.lower) |
|
|
|
columns = ["Model", "PyTorch support", "TensorFlow support", "Flax Support"] |
|
|
|
|
|
widths = [len(c) + 2 for c in columns] |
|
widths[0] = max([len(doc_link) for doc_link in model_name_to_link_mapping.values()]) + 2 |
|
|
|
|
|
table = "|" + "|".join([_center_text(c, w) for c, w in zip(columns, widths)]) + "|\n" |
|
|
|
table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths]) + "|\n" |
|
|
|
check = {True: "✅", False: "❌"} |
|
|
|
for name in model_names: |
|
if name in MODEL_NAMES_TO_IGNORE: |
|
continue |
|
if name in MODEL_NAMES_WITH_SAME_CONFIG.keys(): |
|
prefix = model_name_to_prefix[MODEL_NAMES_WITH_SAME_CONFIG[name]] |
|
else: |
|
prefix = model_name_to_prefix[name] |
|
line = [ |
|
model_name_to_link_mapping[name], |
|
check[pt_models[prefix]], |
|
check[tf_models[prefix]], |
|
check[flax_models[prefix]], |
|
] |
|
table += "|" + "|".join([_center_text(l, w) for l, w in zip(line, widths)]) + "|\n" |
|
return table |
|
|
|
|
|
def check_model_table(overwrite=False): |
|
""" |
|
Check the model table in the index.md is consistent with the state of the lib and potentially fix it. |
|
|
|
Args: |
|
overwrite (`bool`, *optional*, defaults to `False`): |
|
Whether or not to overwrite the table when it's not up to date. |
|
""" |
|
current_table, start_index, end_index, lines = _find_text_in_file( |
|
filename=os.path.join(PATH_TO_DOCS, "index.md"), |
|
start_prompt="<!--This table is updated automatically from the auto modules", |
|
end_prompt="<!-- End table-->", |
|
) |
|
new_table = get_model_table_from_auto_modules() |
|
|
|
if current_table != new_table: |
|
if overwrite: |
|
with open(os.path.join(PATH_TO_DOCS, "index.md"), "w", encoding="utf-8", newline="\n") as f: |
|
f.writelines(lines[:start_index] + [new_table] + lines[end_index:]) |
|
else: |
|
raise ValueError( |
|
"The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") |
|
args = parser.parse_args() |
|
|
|
check_model_table(args.fix_and_overwrite) |
|
|