# Modelos multilingües para inferencia [[open-in-colab]] Existen varios modelos multilingües en 🤗 Transformers y su uso para inferencia difiere de los modelos monolingües. Sin embargo, no *todos* los usos de los modelos multilingües son diferentes. Algunos modelos, como [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased), pueden utilizarse igual que un modelo monolingüe. Esta guía te enseñará cómo utilizar modelos multilingües cuyo uso difiere en la inferencia. ## XLM XLM tiene diez checkpoints diferentes de los cuales solo uno es monolingüe. Los nueve checkpoints restantes del modelo pueden dividirse en dos categorías: los checkpoints que utilizan language embeddings y los que no. ### XLM con language embeddings Los siguientes modelos XLM usan language embeddings para especificar el lenguaje utilizado en la inferencia: - `xlm-mlm-ende-1024` (Masked language modeling, English-German) - `xlm-mlm-enfr-1024` (Masked language modeling, English-French) - `xlm-mlm-enro-1024` (Masked language modeling, English-Romanian) - `xlm-mlm-xnli15-1024` (Masked language modeling, XNLI languages) - `xlm-mlm-tlm-xnli15-1024` (Masked language modeling + translation, XNLI languages) - `xlm-clm-enfr-1024` (Causal language modeling, English-French) - `xlm-clm-ende-1024` (Causal language modeling, English-German) Los language embeddings son representados como un tensor de la mismas dimensiones que los `input_ids` pasados al modelo. Los valores de estos tensores dependen del idioma utilizado y se identifican mediante los atributos `lang2id` y `id2lang` del tokenizador. En este ejemplo, carga el checkpoint `xlm-clm-enfr-1024` (Causal language modeling, English-French): ```py >>> import torch >>> from transformers import XLMTokenizer, XLMWithLMHeadModel >>> tokenizer = XLMTokenizer.from_pretrained("xlm-clm-enfr-1024") >>> model = XLMWithLMHeadModel.from_pretrained("xlm-clm-enfr-1024") ``` El atributo `lang2id` del tokenizador muestra los idiomas de este modelo y sus ids: ```py >>> print(tokenizer.lang2id) {'en': 0, 'fr': 1} ``` A continuación, crea un input de ejemplo: ```py >>> input_ids = torch.tensor([tokenizer.encode("Wikipedia was used to")]) # batch size of 1 ``` Establece el id del idioma, por ejemplo `"en"`, y utilízalo para definir el language embedding. El language embedding es un tensor lleno de `0` ya que es el id del idioma para inglés. Este tensor debe ser del mismo tamaño que `input_ids`. ```py >>> language_id = tokenizer.lang2id["en"] # 0 >>> langs = torch.tensor([language_id] * input_ids.shape[1]) # torch.tensor([0, 0, 0, ..., 0]) >>> # We reshape it to be of size (batch_size, sequence_length) >>> langs = langs.view(1, -1) # is now of shape [1, sequence_length] (we have a batch size of 1) ``` Ahora puedes pasar los `input_ids` y el language embedding al modelo: ```py >>> outputs = model(input_ids, langs=langs) ``` El script [run_generation.py](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-generation/run_generation.py) puede generar texto con language embeddings utilizando los checkpoints `xlm-clm`. ### XLM sin language embeddings Los siguientes modelos XLM no requieren language embeddings durante la inferencia: - `xlm-mlm-17-1280` (modelado de lenguaje enmascarado, 17 idiomas) - `xlm-mlm-100-1280` (modelado de lenguaje enmascarado, 100 idiomas) Estos modelos se utilizan para representaciones genéricas de frases a diferencia de los anteriores checkpoints XLM. ## BERT Los siguientes modelos de BERT pueden utilizarse para tareas multilingües: - `bert-base-multilingual-uncased` (modelado de lenguaje enmascarado + predicción de la siguiente oración, 102 idiomas) - `bert-base-multilingual-cased` (modelado de lenguaje enmascarado + predicción de la siguiente oración, 104 idiomas) Estos modelos no requieren language embeddings durante la inferencia. Deben identificar la lengua a partir del contexto e inferir en consecuencia. ## XLM-RoBERTa Los siguientes modelos de XLM-RoBERTa pueden utilizarse para tareas multilingües: - `xlm-roberta-base` (modelado de lenguaje enmascarado, 100 idiomas) - `xlm-roberta-large` (Modelado de lenguaje enmascarado, 100 idiomas) XLM-RoBERTa se entrenó con 2,5 TB de datos CommonCrawl recién creados y depurados en 100 idiomas. Proporciona fuertes ventajas sobre los modelos multilingües publicados anteriormente como mBERT o XLM en tareas posteriores como la clasificación, el etiquetado de secuencias y la respuesta a preguntas. ## M2M100 Los siguientes modelos de M2M100 pueden utilizarse para traducción multilingüe: - `facebook/m2m100_418M` (traducción) - `facebook/m2m100_1.2B` (traducción) En este ejemplo, carga el checkpoint `facebook/m2m100_418M` para traducir del chino al inglés. Puedes establecer el idioma de origen en el tokenizador: ```py >>> from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer >>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger." >>> chinese_text = "不要插手巫師的事務, 因為他們是微妙的, 很快就會發怒." >>> tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M", src_lang="zh") >>> model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") ``` Tokeniza el texto: ```py >>> encoded_zh = tokenizer(chinese_text, return_tensors="pt") ``` M2M100 fuerza el id del idioma de destino como el primer token generado para traducir al idioma de destino.. Establece el `forced_bos_token_id` a `en` en el método `generate` para traducir al inglés: ```py >>> generated_tokens = model.generate(**encoded_zh, forced_bos_token_id=tokenizer.get_lang_id("en")) >>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) 'Do not interfere with the matters of the witches, because they are delicate and will soon be angry.' ``` ## MBart Los siguientes modelos de MBart pueden utilizarse para traducción multilingüe: - `facebook/mbart-large-50-one-to-many-mmt` (traducción automática multilingüe de uno a muchos, 50 idiomas) - `facebook/mbart-large-50-many-to-many-mmt` (traducción automática multilingüe de muchos a muchos, 50 idiomas) - `facebook/mbart-large-50-many-to-one-mmt` (traducción automática multilingüe muchos a uno, 50 idiomas) - `facebook/mbart-large-50` (traducción multilingüe, 50 idiomas) - `facebook/mbart-large-cc25` En este ejemplo, carga el checkpoint `facebook/mbart-large-50-many-to-many-mmt` para traducir del finlandés al inglés. Puedes establecer el idioma de origen en el tokenizador: ```py >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> en_text = "Do not meddle in the affairs of wizards, for they are subtle and quick to anger." >>> fi_text = "Älä sekaannu velhojen asioihin, sillä ne ovat hienovaraisia ja nopeasti vihaisia." >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-50-many-to-many-mmt", src_lang="fi_FI") >>> model = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") ``` Tokeniza el texto: ```py >>> encoded_en = tokenizer(en_text, return_tensors="pt") ``` MBart fuerza el id del idioma de destino como el primer token generado para traducirlo. Establece el `forced_bos_token_id` a `en` en el método `generate` para traducir al inglés: ```py >>> generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.lang_code_to_id("en_XX")) >>> tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) "Don't interfere with the wizard's affairs, because they are subtle, will soon get angry." ``` Si estás usando el checkpoint `facebook/mbart-large-50-many-to-one-mmt` no necesitas forzar el id del idioma de destino como el primer token generado, de lo contrario el uso es el mismo.