Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,18 +3,19 @@ import pandas as pd
|
|
3 |
|
4 |
# Expanded dataframe with hidden columns
|
5 |
leaderboard_df = (
|
6 |
-
pd.read_csv("results.csv", usecols=["dataset", "modality", "model", "
|
7 |
-
.rename(columns={"dataset": "Dataset", "modality": "Approach", "model": "Model"})
|
8 |
.round(3)
|
9 |
)
|
10 |
|
11 |
-
def filter_leaderboard(dataset_choice, approach_choice):
|
12 |
"""Filter dataframe based on selections and drop filter columns"""
|
13 |
filtered_df = leaderboard_df[
|
14 |
(leaderboard_df['Dataset'] == dataset_choice) &
|
15 |
-
(leaderboard_df['Approach'] == approach_choice)
|
|
|
16 |
]
|
17 |
-
return filtered_df.drop(columns=['Dataset', 'Approach']).sort_values('
|
18 |
|
19 |
with gr.Blocks(title="TraitGym Leaderboard") as demo:
|
20 |
gr.Markdown("## π TraitGym Leaderboard")
|
@@ -30,25 +31,30 @@ with gr.Blocks(title="TraitGym Leaderboard") as demo:
|
|
30 |
value="Zero-shot",
|
31 |
label="Select Approach"
|
32 |
)
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
leaderboard = gr.Dataframe(
|
35 |
-
headers=["Model", "
|
36 |
datatype=["str", "number", "number"],
|
37 |
interactive=False,
|
38 |
)
|
39 |
|
40 |
# Connect filters to update the table
|
41 |
-
for filter in [dataset_filter, approach_filter]:
|
42 |
filter.change(
|
43 |
fn=filter_leaderboard,
|
44 |
-
inputs=[dataset_filter, approach_filter],
|
45 |
outputs=leaderboard
|
46 |
)
|
47 |
|
48 |
# Initial load
|
49 |
demo.load(
|
50 |
fn=filter_leaderboard,
|
51 |
-
inputs=[dataset_filter, approach_filter],
|
52 |
outputs=leaderboard
|
53 |
)
|
54 |
|
|
|
3 |
|
4 |
# Expanded dataframe with hidden columns
|
5 |
leaderboard_df = (
|
6 |
+
pd.read_csv("results.csv", usecols=["dataset", "modality", "model", "score", "se", "metric"])
|
7 |
+
.rename(columns={"dataset": "Dataset", "modality": "Approach", "model": "Model", "metric": "Metric"})
|
8 |
.round(3)
|
9 |
)
|
10 |
|
11 |
+
def filter_leaderboard(dataset_choice, approach_choice, metric_choice):
|
12 |
"""Filter dataframe based on selections and drop filter columns"""
|
13 |
filtered_df = leaderboard_df[
|
14 |
(leaderboard_df['Dataset'] == dataset_choice) &
|
15 |
+
(leaderboard_df['Approach'] == approach_choice) &
|
16 |
+
(leaderboard_df['Metric'] == metric_choice)
|
17 |
]
|
18 |
+
return filtered_df.drop(columns=['Dataset', 'Approach', 'Metric']).sort_values('score', ascending=False)
|
19 |
|
20 |
with gr.Blocks(title="TraitGym Leaderboard") as demo:
|
21 |
gr.Markdown("## π TraitGym Leaderboard")
|
|
|
31 |
value="Zero-shot",
|
32 |
label="Select Approach"
|
33 |
)
|
34 |
+
metric_filter = gr.Radio(
|
35 |
+
choices=["AUPRC", "AUPRC_by_chrom_weighted_average"],
|
36 |
+
value="AUPRC",
|
37 |
+
label="Select Metric"
|
38 |
+
)
|
39 |
|
40 |
leaderboard = gr.Dataframe(
|
41 |
+
headers=["Model", "score", "se"],
|
42 |
datatype=["str", "number", "number"],
|
43 |
interactive=False,
|
44 |
)
|
45 |
|
46 |
# Connect filters to update the table
|
47 |
+
for filter in [dataset_filter, approach_filter, metric_filter]:
|
48 |
filter.change(
|
49 |
fn=filter_leaderboard,
|
50 |
+
inputs=[dataset_filter, approach_filter, metric_filter],
|
51 |
outputs=leaderboard
|
52 |
)
|
53 |
|
54 |
# Initial load
|
55 |
demo.load(
|
56 |
fn=filter_leaderboard,
|
57 |
+
inputs=[dataset_filter, approach_filter, metric_filter],
|
58 |
outputs=leaderboard
|
59 |
)
|
60 |
|