Remove unused model
Browse files
app.py
CHANGED
@@ -173,130 +173,134 @@ class ClipTextModel(nn.Module):
|
|
173 |
torch.save(self.output_linear.state_dict(), os.path.join(output_dir, "output_linear.bin"))
|
174 |
|
175 |
|
176 |
-
class ClipVisionModel(nn.Module):
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
class ClipModel(nn.Module):
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
|
|
|
|
|
|
|
|
300 |
|
301 |
def encode_text(text, model):
|
302 |
text = normalize_text(text)
|
@@ -304,10 +308,10 @@ def encode_text(text, model):
|
|
304 |
return text_embedding
|
305 |
|
306 |
|
307 |
-
def encode_image(image_filename, model):
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
|
312 |
|
313 |
st.title("いらすと検索(日本語CLIPゼロショット)")
|
@@ -316,7 +320,9 @@ description_text = st.empty()
|
|
316 |
if "model" not in st.session_state:
|
317 |
description_text.text("日本語CLIPモデル読み込み中... ")
|
318 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
319 |
-
|
|
|
|
|
320 |
st.session_state.model = model
|
321 |
|
322 |
print("extract dataset")
|
@@ -325,7 +331,8 @@ if "model" not in st.session_state:
|
|
325 |
)
|
326 |
|
327 |
print("loading dataset")
|
328 |
-
df = pq.read_table("clip_zeroshot_irasuto_items_20210224.parquet"
|
|
|
329 |
st.session_state.df = df
|
330 |
|
331 |
# sentence_vectors = np.stack(df["sentence_vector"])
|
|
|
173 |
torch.save(self.output_linear.state_dict(), os.path.join(output_dir, "output_linear.bin"))
|
174 |
|
175 |
|
176 |
+
# class ClipVisionModel(nn.Module):
|
177 |
+
# def __init__(self, model_name_or_path, device=None):
|
178 |
+
# super(ClipVisionModel, self).__init__()
|
179 |
+
|
180 |
+
# if os.path.exists(model_name_or_path):
|
181 |
+
# # load from file system
|
182 |
+
# visual_projection_state_dict = torch.load(os.path.join(model_name_or_path, "visual_projection.bin"))
|
183 |
+
# else:
|
184 |
+
# # download from the Hugging Face model hub
|
185 |
+
# filename = hf_hub_download(repo_id=model_name_or_path, filename="visual_projection.bin")
|
186 |
+
# visual_projection_state_dict = torch.load(filename)
|
187 |
+
|
188 |
+
# self.model = transformers.CLIPVisionModel.from_pretrained(model_name_or_path)
|
189 |
+
# config = self.model.config
|
190 |
+
|
191 |
+
# self.feature_extractor = transformers.CLIPFeatureExtractor.from_pretrained(model_name_or_path)
|
192 |
+
|
193 |
+
# vision_embed_dim = config.hidden_size
|
194 |
+
# projection_dim = 512
|
195 |
+
|
196 |
+
# self.visual_projection = nn.Linear(vision_embed_dim, projection_dim, bias=False)
|
197 |
+
# self.visual_projection.load_state_dict(visual_projection_state_dict)
|
198 |
+
|
199 |
+
# self.eval()
|
200 |
+
|
201 |
+
# if device is None:
|
202 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
203 |
+
# self.device = torch.device(device)
|
204 |
+
# self.to(self.device)
|
205 |
+
|
206 |
+
# def forward(
|
207 |
+
# self,
|
208 |
+
# pixel_values=None,
|
209 |
+
# output_attentions=None,
|
210 |
+
# output_hidden_states=None,
|
211 |
+
# return_dict=None,
|
212 |
+
# ):
|
213 |
+
# output_states = self.model(
|
214 |
+
# pixel_values=pixel_values,
|
215 |
+
# output_attentions=output_attentions,
|
216 |
+
# output_hidden_states=output_hidden_states,
|
217 |
+
# return_dict=return_dict,
|
218 |
+
# )
|
219 |
+
# image_embeds = self.visual_projection(output_states[1])
|
220 |
+
|
221 |
+
# return image_embeds
|
222 |
+
|
223 |
+
# @torch.no_grad()
|
224 |
+
# def encode_image(self, images, batch_size=8):
|
225 |
+
# all_embeddings = []
|
226 |
+
# iterator = range(0, len(images), batch_size)
|
227 |
+
# for batch_idx in iterator:
|
228 |
+
# batch = images[batch_idx:batch_idx + batch_size]
|
229 |
+
|
230 |
+
# encoded_input = self.feature_extractor(batch, return_tensors="pt").to(self.device)
|
231 |
+
# model_output = self(**encoded_input)
|
232 |
+
# image_embeddings = model_output.cpu()
|
233 |
+
|
234 |
+
# all_embeddings.extend(image_embeddings)
|
235 |
+
|
236 |
+
# # return torch.stack(all_embeddings).numpy()
|
237 |
+
# return torch.stack(all_embeddings)
|
238 |
+
|
239 |
+
# @staticmethod
|
240 |
+
# def remove_alpha_channel(image):
|
241 |
+
# image.convert("RGBA")
|
242 |
+
# alpha = image.convert('RGBA').split()[-1]
|
243 |
+
# background = Image.new("RGBA", image.size, (255, 255, 255))
|
244 |
+
# background.paste(image, mask=alpha)
|
245 |
+
# image = background.convert("RGB")
|
246 |
+
# return image
|
247 |
+
|
248 |
+
# def save(self, output_dir):
|
249 |
+
# self.model.save_pretrained(output_dir)
|
250 |
+
# self.feature_extractor.save_pretrained(output_dir)
|
251 |
+
# torch.save(self.visual_projection.state_dict(), os.path.join(output_dir, "visual_projection.bin"))
|
252 |
+
|
253 |
+
|
254 |
+
# class ClipModel(nn.Module):
|
255 |
+
# def __init__(self, model_name_or_path, device=None):
|
256 |
+
# super(ClipModel, self).__init__()
|
257 |
+
|
258 |
+
# if os.path.exists(model_name_or_path):
|
259 |
+
# # load from file system
|
260 |
+
# repo_dir = model_name_or_path
|
261 |
+
# else:
|
262 |
+
# # download from the Hugging Face model hub
|
263 |
+
# repo_dir = snapshot_download(model_name_or_path)
|
264 |
+
|
265 |
+
# self.text_model = ClipTextModel(repo_dir, device=device)
|
266 |
+
# self.vision_model = ClipVisionModel(os.path.join(repo_dir, "vision_model"), device=device)
|
267 |
+
|
268 |
+
# with torch.no_grad():
|
269 |
+
# logit_scale = nn.Parameter(torch.ones([]) * 2.6592)
|
270 |
+
# logit_scale.set_(torch.load(os.path.join(repo_dir, "logit_scale.bin")).clone().cpu())
|
271 |
+
# self.logit_scale = logit_scale
|
272 |
+
|
273 |
+
# self.eval()
|
274 |
+
|
275 |
+
# if device is None:
|
276 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
277 |
+
# self.device = torch.device(device)
|
278 |
+
# self.to(self.device)
|
279 |
+
|
280 |
+
# def forward(self, pixel_values, input_ids, attention_mask, token_type_ids):
|
281 |
+
# image_features = self.vision_model(pixel_values=pixel_values)
|
282 |
+
# text_features = self.text_model(input_ids=input_ids,
|
283 |
+
# attention_mask=attention_mask,
|
284 |
+
# token_type_ids=token_type_ids)[0]
|
285 |
+
|
286 |
+
# image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
287 |
+
# text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
288 |
+
|
289 |
+
# logit_scale = self.logit_scale.exp()
|
290 |
+
# logits_per_image = logit_scale * image_features @ text_features.t()
|
291 |
+
# logits_per_text = logits_per_image.t()
|
292 |
+
|
293 |
+
# return logits_per_image, logits_per_text
|
294 |
+
|
295 |
+
# def save(self, output_dir):
|
296 |
+
# torch.save(self.logit_scale, os.path.join(output_dir, "logit_scale.bin"))
|
297 |
+
# self.text_model.save(output_dir)
|
298 |
+
# self.vision_model.save(os.path.join(output_dir, "vision_model"))
|
299 |
+
|
300 |
+
|
301 |
+
def DummyClipModel:
|
302 |
+
def __init__(self, text_model)
|
303 |
+
self.text_model = text_model
|
304 |
|
305 |
def encode_text(text, model):
|
306 |
text = normalize_text(text)
|
|
|
308 |
return text_embedding
|
309 |
|
310 |
|
311 |
+
# def encode_image(image_filename, model):
|
312 |
+
# image = Image.open(image_filename)
|
313 |
+
# image_embedding = model.vision_model.encode_image([image]).numpy()
|
314 |
+
# return image_embedding
|
315 |
|
316 |
|
317 |
st.title("いらすと検索(日本語CLIPゼロショット)")
|
|
|
320 |
if "model" not in st.session_state:
|
321 |
description_text.text("日本語CLIPモデル読み込み中... ")
|
322 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
323 |
+
text_model = ClipTextModel("sonoisa/clip-vit-b-32-japanese-v1", device=device)
|
324 |
+
# model = ClipModel("sonoisa/clip-vit-b-32-japanese-v1", device=device)
|
325 |
+
model = DummyClipModel(text_model)
|
326 |
st.session_state.model = model
|
327 |
|
328 |
print("extract dataset")
|
|
|
331 |
)
|
332 |
|
333 |
print("loading dataset")
|
334 |
+
df = pq.read_table("clip_zeroshot_irasuto_items_20210224.parquet",
|
335 |
+
columns=["page", "description", "image_url", "image_vector"]).to_pandas()
|
336 |
st.session_state.df = df
|
337 |
|
338 |
# sentence_vectors = np.stack(df["sentence_vector"])
|