File size: 18,294 Bytes
83db5da 1d9a9c4 83db5da 1d9a9c4 83db5da 002b366 83db5da 4213e17 83db5da 1d9a9c4 83db5da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
<!--
Copyright (c) 2024 Isao Sonobe
Released under the MIT license
https://opensource.org/license/mit/
-->
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Chat with your PDF</title>
<meta name="description" content="Chat with your PDF">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@gradio/[email protected]/dist/lite.css" />
<style>
html, body {
margin: 0;
padding: 0;
height: 100%;
background: var(--body-background-fill);
}
footer {
display: none !important;
}
#chatbot {
height: auto !important;
min-height: 500px;
}
.chatbot {
white-space: pre-wrap;
}
.gallery-item > .gallery {
max-width: 380px;
}
</style>
</head>
<body>
<gradio-lite>
<gradio-requirements>
pdfminer.six==20231228
pyodide-http==0.2.1
</gradio-requirements>
<gradio-file name="chat_history.json">
[[null, "ようこそ! PDFのテキストを参照しながら対話できるチャットボットです。\nPDFファイルをアップロードするとテキストが抽出されます。\nメッセージの中に{context}と書くと、抽出されたテキストがその部分に埋め込まれて対話が行われます。一番下のExamplesにその例があります。\nメッセージを書くときにShift+Enterを入力すると改行できます。"]]
</gradio-file>
<gradio-file name="app.py" entrypoint>
import os
# Gradioによるアナリティクスを無効化
os.putenv("GRADIO_ANALYTICS_ENABLED", "False")
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
import base64
from pathlib import Path
import json
import pyodide_http
pyodide_http.patch_all()
from pdfminer.pdfinterp import PDFResourceManager
from pdfminer.converter import TextConverter
from pdfminer.pdfinterp import PDFPageInterpreter
from pdfminer.pdfpage import PDFPage
from pdfminer.layout import LAParams
from io import StringIO
# openaiライブラリのインストール方法は https://github.com/pyodide/pyodide/issues/4292 を参考にしました。
import micropip
await micropip.install("https://raw.githubusercontent.com/sonoisa/pyodide_wheels/main/multidict/multidict-4.7.6-py3-none-any.whl", keep_going=True)
await micropip.install("https://raw.githubusercontent.com/sonoisa/pyodide_wheels/main/frozenlist/frozenlist-1.4.0-py3-none-any.whl", keep_going=True)
await micropip.install("https://raw.githubusercontent.com/sonoisa/pyodide_wheels/main/aiohttp/aiohttp-4.0.0a2.dev0-py3-none-any.whl", keep_going=True)
await micropip.install("https://raw.githubusercontent.com/sonoisa/pyodide_wheels/main/openai/openai-1.3.7-py3-none-any.whl", keep_going=True)
await micropip.install("https://raw.githubusercontent.com/sonoisa/pyodide_wheels/main/urllib3/urllib3-2.1.0-py3-none-any.whl", keep_going=True)
await micropip.install("ssl")
import ssl
await micropip.install("httpx", keep_going=True)
import httpx
await micropip.install("https://raw.githubusercontent.com/sonoisa/pyodide_wheels/main/urllib3/urllib3-2.1.0-py3-none-any.whl", keep_going=True)
import urllib3
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
await micropip.install("https://raw.githubusercontent.com/sonoisa/pyodide_wheels/main/tiktoken/tiktoken-0.5.1-cp311-cp311-emscripten_3_1_45_wasm32.whl", keep_going=True)
class URLLib3Transport(httpx.BaseTransport):
"""
urllib3を使用してhttpxのリクエストを処理するカスタムトランスポートクラス
"""
def __init__(self):
self.pool = urllib3.PoolManager()
def handle_request(self, request: httpx.Request):
payload = json.loads(request.content.decode("utf-8"))
urllib3_response = self.pool.request(request.method, str(request.url), headers=request.headers, json=payload)
stream = httpx.ByteStream(urllib3_response.data)
return httpx.Response(urllib3_response.status, headers=urllib3_response.headers, stream=stream)
http_client = httpx.Client(transport=URLLib3Transport())
from openai import OpenAI, AzureOpenAI
import tiktoken
OPENAI_TOKENIZER = tiktoken.get_encoding("cl100k_base")
def extract_text(pdf_filename):
"""
PDFファイルからテキストを抽出する。
Args:
pdf_filename (str): 抽出するPDFファイルのパス
Returns:
str: PDFファイルから抽出されたテキスト
"""
with open(pdf_filename, "rb") as pdf_file:
output = StringIO()
resource_manager = PDFResourceManager()
laparams = LAParams()
text_converter = TextConverter(resource_manager, output, laparams=laparams)
page_interpreter = PDFPageInterpreter(resource_manager, text_converter)
for i_page in PDFPage.get_pages(pdf_file):
try:
page_interpreter.process_page(i_page)
except Exception as e:
# print(e)
pass
output_text = output.getvalue()
output.close()
text_converter.close()
return output_text
def get_character_count_info(char_count, token_count):
"""
文字数とトークン数の情報を文字列で返す。
Args:
char_count (int): 文字数
token_count (int): トークン数
Returns:
str: 文字数とトークン数の情報を含む文字列
"""
return f"""{char_count:,} character{'s' if char_count > 1 else ''}
{token_count:,} token{'s' if token_count > 1 else ''}"""
def update_context_element(pdf_file_obj):
"""
PDFファイルからテキストを抽出し、コンテキスト要素を更新する。
Args:
pdf_file_obj (File): アップロードされたPDFファイルオブジェクト
Returns:
Tuple: コンテキストテキストボックスに格納する抽出されたテキスト情報と、その文字数情報
"""
context = extract_text(pdf_file_obj.name)
return gr.update(value=context, interactive=True), count_characters(context)
def count_characters(text):
"""
テキストの文字数とトークン数を計算する。
Args:
text (str): 文字数とトークン数を計算するテキスト
Returns:
str: 文字数とトークン数の情報を含む文字列
"""
tokens = OPENAI_TOKENIZER.encode(text)
return get_character_count_info(len(text), len(tokens))
def process_prompt(prompt, history, context, platform, endpoint, azure_deployment, azure_api_version, api_key, model_name, max_tokens, temperature):
"""
ユーザーのプロンプトを処理し、ChatGPTによる生成結果を返す。
Args:
prompt (str): ユーザーからの入力プロンプト
history (list): チャット履歴
context (str): チャットコンテキスト
platform (str): 使用するAIプラットフォーム
endpoint (str): AIサービスのエンドポイント
azure_deployment (str): Azureのデプロイメント名
azure_api_version (str): Azure APIのバージョン
api_key (str): APIキー
model_name (str): 使用するAIモデルの名前
max_tokens (int): 生成する最大トークン数
temperature (float): クリエイティビティの度合いを示す温度パラメータ
Returns:
str: ChatGPTによる生成結果
"""
try:
messages = []
for user_message, assistant_message in history:
if user_message is not None and assistant_message is not None:
messages.append({ "role": "user", "content": user_message })
messages.append({ "role": "assistant", "content": assistant_message })
prompt = prompt.replace("{context}", context)
messages.append({ "role": "user", "content": prompt })
if platform == "OpenAI":
openai_client = OpenAI(
base_url=endpoint,
api_key=api_key,
http_client=http_client
)
else: # Azure
openai_client = AzureOpenAI(
azure_endpoint=endpoint,
api_version=azure_api_version,
azure_deployment=azure_deployment,
api_key=api_key,
http_client=http_client
)
completion = openai_client.chat.completions.create(
messages=messages,
model=model_name,
max_tokens=max_tokens,
temperature=temperature,
stream=False
)
if hasattr(completion, "error"):
raise gr.Error(completion.error["message"])
else:
message = completion.choices[0].message
return message.content
except Exception as e:
if hasattr(e, "message"):
raise gr.Error(e.message)
else:
raise gr.Error(str(e))
def load_api_key(file_obj):
"""
APIキーファイルからAPIキーを読み込む。
Args:
file_obj (File): APIキーファイルオブジェクト
Returns:
str: 読み込まれたAPIキー文字列
"""
try:
with open(file_obj.name, "r", encoding="utf-8") as api_key_file:
return api_key_file.read().strip()
except Exception as e:
raise gr.Error(str(e))
def main():
"""
アプリケーションのメイン関数。Gradioインターフェースを設定し、アプリケーションを起動する。
"""
try:
# クエリパラメータに保存されていることもあるチャット履歴を読み出す。
with open("chat_history.json", "r", encoding="utf-8") as f:
CHAT_HISTORY = json.load(f)
except Exception as e:
print(e)
CHAT_HISTORY = []
# localStorageから設定情報ををロードする。
js_define_utilities_and_load_settings = """() => {
const KEY_PREFIX = "serverless_chat_with_your_pdf:";
const loadSettings = () => {
const getItem = (key, defaultValue) => {
const jsonValue = localStorage.getItem(KEY_PREFIX + key);
if (jsonValue) {
return JSON.parse(jsonValue);
} else {
return defaultValue;
}
};
const platform = getItem("platform", "OpenAI");
const endpoint = getItem("endpoint", "https://api.openai.com/v1");
const azure_deployment = getItem("azure_deployment", "");
const azure_api_version = getItem("azure_api_version", "");
const model_name = getItem("model_name", "gpt-4-turbo-preview");
const max_tokens = getItem("max_tokens", 4096);
const temperature = getItem("temperature", 0.2);
const save_chat_history_to_url = getItem("save_chat_history_to_url", false);
return [platform, endpoint, azure_deployment, azure_api_version, model_name, max_tokens, temperature, save_chat_history_to_url];
};
globalThis.resetSettings = () => {
for (let key in localStorage) {
if (key.startsWith(KEY_PREFIX)) {
localStorage.removeItem(key);
}
}
return loadSettings();
};
globalThis.saveItem = (key, value) => {
localStorage.setItem(KEY_PREFIX + key, JSON.stringify(value));
};
return loadSettings();
}
"""
# should_saveがtrueであればURLにチャット履歴を保存し、falseであればチャット履歴を削除する。
save_or_delete_chat_history = '''(hist, should_save) => {
saveItem("save_chat_history_to_url", should_save);
if (!should_save) {
const url = new URL(window.location.href);
url.searchParams.delete("history");
window.history.replaceState({path:url.href}, '', url.href);
} else {
const compressedHistory = LZString.compressToEncodedURIComponent(JSON.stringify(hist));
const url = new URL(window.location.href);
url.searchParams.set("history", compressedHistory);
window.history.replaceState({path:url.href}, '', url.href);
}
}'''
with gr.Blocks(theme=gr.themes.Default(), analytics_enabled=False) as app:
with gr.Tabs():
with gr.TabItem("Settings"):
with gr.Row():
with gr.Column():
platform = gr.Radio(label="Platform", interactive=True,
choices=["OpenAI", "Azure"], value="OpenAI")
platform.change(None, inputs=platform, outputs=None,
js='(x) => saveItem("platform", x)', show_progress="hidden")
with gr.Row():
endpoint = gr.Textbox(label="Endpoint", interactive=True)
endpoint.change(None, inputs=endpoint, outputs=None,
js='(x) => saveItem("endpoint", x)', show_progress="hidden")
azure_deployment = gr.Textbox(label="Azure Deployment", interactive=True)
azure_deployment.change(None, inputs=azure_deployment, outputs=None,
js='(x) => saveItem("azure_deployment", x)', show_progress="hidden")
azure_api_version = gr.Textbox(label="Azure API Version", interactive=True)
azure_api_version.change(None, inputs=azure_api_version, outputs=None,
js='(x) => saveItem("azure_api_version", x)', show_progress="hidden")
with gr.Row():
api_key_file = gr.File(file_count="single", file_types=["text"],
height=80, label="API Key File")
api_key = gr.Textbox(label="API Key", type="password", interactive=True)
# 注意: 秘密情報をlocalStorageに保存してはならない。他者に秘密情報が盗まれる危険性があるからである。
api_key_file.upload(fn=load_api_key, inputs=api_key_file, outputs=api_key,
show_progress="hidden")
api_key_file.clear(fn=lambda: None, inputs=None, outputs=api_key, show_progress="hidden")
model_name = gr.Textbox(label="model", interactive=True)
model_name.change(None, inputs=model_name, outputs=None,
js='(x) => saveItem("model_name", x)', show_progress="hidden")
max_tokens = gr.Number(label="Max Tokens", interactive=True,
minimum=0, precision=0, step=1)
max_tokens.change(None, inputs=max_tokens, outputs=None,
js='(x) => saveItem("max_tokens", x)', show_progress="hidden")
temperature = gr.Slider(label="Temperature", interactive=True,
minimum=0.0, maximum=1.0, step=0.1)
temperature.change(None, inputs=temperature, outputs=None,
js='(x) => saveItem("temperature", x)', show_progress="hidden")
save_chat_history_to_url = gr.Checkbox(label="Save Chat History to URL", interactive=True)
setting_items = [platform, endpoint, azure_deployment, azure_api_version, model_name, max_tokens, temperature, save_chat_history_to_url]
reset_button = gr.Button("Reset Settings")
reset_button.click(None, inputs=None, outputs=setting_items,
js="() => resetSettings()", show_progress="hidden")
with gr.TabItem("Chat"):
with gr.Row():
with gr.Column(scale=1):
pdf_file = gr.File(file_count="single", file_types=[".pdf"],
height=80, label="PDF")
context = gr.Textbox(label="Context", lines=20,
interactive=True, autoscroll=False, show_copy_button=True)
char_counter = gr.Textbox(label="Statistics", value=get_character_count_info(0, 0),
lines=2, max_lines=2, interactive=False, container=True)
pdf_file.upload(fn=update_context_element, inputs=pdf_file, outputs=[context, char_counter])
pdf_file.clear(fn=lambda: None, inputs=None, outputs=context, show_progress="hidden")
context.change(fn=count_characters, inputs=context, outputs=char_counter, show_progress="hidden")
with gr.Column(scale=2):
chatbot = gr.Chatbot(
CHAT_HISTORY,
elem_id="chatbot", render=False, height=500, show_copy_button=True,
render_markdown=False, likeable=False, layout="bubble",
avatar_images=[None, Path("robot.png")])
chatbot.change(None, inputs=[chatbot, save_chat_history_to_url], outputs=None,
# チャット履歴をクエリパラメータに保存する。
js=save_or_delete_chat_history, show_progress="hidden")
save_chat_history_to_url.change(None, inputs=[chatbot, save_chat_history_to_url], outputs=None,
js=save_or_delete_chat_history, show_progress="hidden")
chat = gr.ChatInterface(process_prompt,
title="Chat with your PDF",
chatbot=chatbot,
textbox=gr.Textbox(
placeholder="Type a message...",
render=False, container=False, scale=7),
additional_inputs=[context, platform, endpoint, azure_deployment, azure_api_version, api_key, model_name, max_tokens, temperature],
examples=[['''制約条件に従い、以下の研究論文で提案されている技術や手法について要約してください。
# 制約条件
* 要約者: 大学教授
* 想定読者: 大学院生
* 要約結果の言語: 日本語
* 要約結果の構成(以下の各項目について500文字):
1. どんな研究であるか
2. 先行研究に比べて優れている点は何か
3. 提案されている技術や手法の重要な点は何か
4. どのような方法で有効であると評価したか
5. 何か議論はあるか
6. 次に読むべき論文は何か
# 研究論文
"""
{context}
"""
# 要約結果'''], ['''制約条件に従い、以下の文書の内容を要約してください。
# 制約条件
* 要約者: 大学教授
* 想定読者: 大学院生
* 形式: 箇条書き
* 分量: 20項目
* 要約結果の言語: 日本語
# 文書
"""
{context}
"""
# 要約'''], ['''制約条件に従い、以下の文書から情報を抽出してください。
# 制約条件
* 抽出する情報: 課題や問題点について言及している全ての文。一つも見落とさないでください。
* 出力形式: 箇条書き
* 出力言語: 元の言語の文章と、その日本語訳
# 文書
"""
{context}
"""
# 抽出結果'''], ["続きを生成してください。"]])
app.load(None, inputs=None, outputs=setting_items,
js=js_define_utilities_and_load_settings, show_progress="hidden")
app.queue().launch()
main()
</gradio-file>
<!-- DALL-Eを用いて作ったボットアイコン -->
<gradio-file name="robot.png" url="https://raw.githubusercontent.com/sonoisa/misc/main/resources/icons/chatbot_icon.png" />
</gradio-lite>
<script language="javascript" src="https://cdn.jsdelivr.net/npm/[email protected]/libs/lz-string.min.js"></script>
<script language="javascript">
(function () {
// クエリパラメータにチャット履歴が記録されていたらそれをロードし、chat_history.jsonファイルに書き出す。
const url = new URL(window.location.href);
if (url.searchParams.has("history")) {
const compressedHistory = url.searchParams.get("history");
hist = LZString.decompressFromEncodedURIComponent(compressedHistory);
const chat_history_element = document.querySelector('gradio-file[name="chat_history.json"]');
chat_history_element.textContent = hist;
}
})();
</script>
<script type="module" crossorigin src="https://cdn.jsdelivr.net/npm/@gradio/[email protected]/dist/lite.js"></script>
</body>
</html> |