Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,44 @@
|
|
1 |
import pandas as pd
|
2 |
-
from google.api_core.client_options import ClientOptions
|
3 |
-
from google.cloud import documentai_v1 as documentai
|
4 |
-
from google.cloud.documentai_v1.types import RawDocument
|
5 |
-
from google.cloud import translate_v2 as translate
|
6 |
-
import zipfile
|
7 |
import os
|
|
|
|
|
8 |
import io
|
9 |
import gradio as gr
|
10 |
-
import
|
11 |
from google.oauth2 import service_account
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
|
|
|
16 |
credentials_raw = os.environ.get("google_authentication")
|
17 |
if not credentials_raw:
|
18 |
raise EnvironmentError("Google Cloud credentials not found in environment.")
|
19 |
credentials_json = json.loads(credentials_raw)
|
20 |
credentials = service_account.Credentials.from_service_account_info(credentials_json)
|
|
|
21 |
|
22 |
# Global DataFrame declaration
|
23 |
results_df = pd.DataFrame(columns=["Filename", "Extracted Text", "Translated Text"])
|
24 |
|
25 |
-
#
|
26 |
project_id = "herbaria-ai"
|
27 |
location = "us"
|
28 |
processor_id = "4307b078717a399a"
|
29 |
|
30 |
def translate_text(text, target_language="en"):
|
31 |
-
|
|
|
32 |
result = translate_client.translate(text, target_language=target_language)
|
33 |
return result["translatedText"]
|
34 |
|
35 |
def batch_process_documents(file_path: str, file_mime_type: str) -> tuple:
|
|
|
36 |
opts = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com", credentials=credentials)
|
37 |
-
|
38 |
client = documentai.DocumentProcessorServiceClient(client_options=opts)
|
39 |
|
40 |
with open(file_path, "rb") as file_stream:
|
@@ -46,9 +50,11 @@ def batch_process_documents(file_path: str, file_mime_type: str) -> tuple:
|
|
46 |
|
47 |
extracted_text = result.document.text
|
48 |
translated_text = translate_text(extracted_text)
|
|
|
49 |
return extracted_text, translated_text
|
50 |
|
51 |
def unzip_and_find_jpgs(file_path):
|
|
|
52 |
extract_path = "extracted_files"
|
53 |
os.makedirs(extract_path, exist_ok=True)
|
54 |
jpg_files = []
|
@@ -61,13 +67,14 @@ def unzip_and_find_jpgs(file_path):
|
|
61 |
if file.lower().endswith('.jpg'):
|
62 |
full_path = os.path.join(root, file)
|
63 |
jpg_files.append(full_path)
|
|
|
64 |
return jpg_files
|
65 |
|
66 |
def process_images(uploaded_file):
|
67 |
global results_df
|
68 |
-
results_df = results_df.iloc[0:0] # Clear the DataFrame
|
69 |
-
|
70 |
-
|
71 |
|
72 |
try:
|
73 |
image_files = unzip_and_find_jpgs(file_path)
|
@@ -84,8 +91,10 @@ def process_images(uploaded_file):
|
|
84 |
}])
|
85 |
results_df = pd.concat([results_df, new_row], ignore_index=True)
|
86 |
except Exception as e:
|
|
|
87 |
return f"An error occurred: {str(e)}"
|
88 |
|
|
|
89 |
return results_df.to_html()
|
90 |
|
91 |
interface = gr.Interface(
|
@@ -98,13 +107,3 @@ interface = gr.Interface(
|
|
98 |
|
99 |
if __name__ == "__main__":
|
100 |
interface.launch(debug=True)
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
# def greet(name):
|
106 |
-
# return "Hello " + name + "!!"
|
107 |
-
|
108 |
-
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
109 |
-
#iface.launch()
|
110 |
-
|
|
|
1 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
2 |
import os
|
3 |
+
import json
|
4 |
+
import zipfile
|
5 |
import io
|
6 |
import gradio as gr
|
7 |
+
import logging
|
8 |
from google.oauth2 import service_account
|
9 |
+
from google.api_core.client_options import ClientOptions
|
10 |
+
from google.cloud import documentai_v1 as documentai
|
11 |
+
from google.cloud.documentai_v1.types import RawDocument
|
12 |
+
from google.cloud import translate_v2 as translate
|
13 |
|
14 |
+
# Setup logging
|
15 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
16 |
|
17 |
+
# Load credentials from environment variable
|
18 |
credentials_raw = os.environ.get("google_authentication")
|
19 |
if not credentials_raw:
|
20 |
raise EnvironmentError("Google Cloud credentials not found in environment.")
|
21 |
credentials_json = json.loads(credentials_raw)
|
22 |
credentials = service_account.Credentials.from_service_account_info(credentials_json)
|
23 |
+
logging.info("Loaded Google Cloud credentials successfully.")
|
24 |
|
25 |
# Global DataFrame declaration
|
26 |
results_df = pd.DataFrame(columns=["Filename", "Extracted Text", "Translated Text"])
|
27 |
|
28 |
+
# Google Cloud Document AI processor details
|
29 |
project_id = "herbaria-ai"
|
30 |
location = "us"
|
31 |
processor_id = "4307b078717a399a"
|
32 |
|
33 |
def translate_text(text, target_language="en"):
|
34 |
+
logging.info(f"Translating text to {target_language}.")
|
35 |
+
translate_client = translate.Client(credentials=credentials)
|
36 |
result = translate_client.translate(text, target_language=target_language)
|
37 |
return result["translatedText"]
|
38 |
|
39 |
def batch_process_documents(file_path: str, file_mime_type: str) -> tuple:
|
40 |
+
logging.info(f"Processing document {file_path}.")
|
41 |
opts = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com", credentials=credentials)
|
|
|
42 |
client = documentai.DocumentProcessorServiceClient(client_options=opts)
|
43 |
|
44 |
with open(file_path, "rb") as file_stream:
|
|
|
50 |
|
51 |
extracted_text = result.document.text
|
52 |
translated_text = translate_text(extracted_text)
|
53 |
+
logging.info(f"Document processed and translated for {file_path}.")
|
54 |
return extracted_text, translated_text
|
55 |
|
56 |
def unzip_and_find_jpgs(file_path):
|
57 |
+
logging.info(f"Unzipping file {file_path}.")
|
58 |
extract_path = "extracted_files"
|
59 |
os.makedirs(extract_path, exist_ok=True)
|
60 |
jpg_files = []
|
|
|
67 |
if file.lower().endswith('.jpg'):
|
68 |
full_path = os.path.join(root, file)
|
69 |
jpg_files.append(full_path)
|
70 |
+
logging.info(f"Found {len(jpg_files)} JPG files in {file_path}.")
|
71 |
return jpg_files
|
72 |
|
73 |
def process_images(uploaded_file):
|
74 |
global results_df
|
75 |
+
results_df = results_df.iloc[0:0] # Clear the DataFrame
|
76 |
+
file_path = uploaded_file.name # Gradio provides the file path
|
77 |
+
logging.info(f"Received file {file_path} for processing.")
|
78 |
|
79 |
try:
|
80 |
image_files = unzip_and_find_jpgs(file_path)
|
|
|
91 |
}])
|
92 |
results_df = pd.concat([results_df, new_row], ignore_index=True)
|
93 |
except Exception as e:
|
94 |
+
logging.error(f"An error occurred: {str(e)}")
|
95 |
return f"An error occurred: {str(e)}"
|
96 |
|
97 |
+
logging.info("Processing complete. Generating HTML output.")
|
98 |
return results_df.to_html()
|
99 |
|
100 |
interface = gr.Interface(
|
|
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
interface.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|