future-xy
commited on
Commit
·
1ae96c8
1
Parent(s):
581fdbd
fix tps
Browse files
backend-cli.py
CHANGED
@@ -12,7 +12,7 @@ from src.backend.run_eval_suite import run_evaluation
|
|
12 |
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
|
13 |
from src.backend.sort_queue import sort_models_by_priority
|
14 |
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Task
|
15 |
-
|
16 |
from src.backend.manage_requests import EvalRequest
|
17 |
from src.leaderboard.read_evals import EvalResult
|
18 |
|
@@ -124,7 +124,7 @@ def request_to_result_name(request: EvalRequest) -> str:
|
|
124 |
|
125 |
|
126 |
def process_evaluation(task: Task, eval_request: EvalRequest) -> dict:
|
127 |
-
batch_size =
|
128 |
try:
|
129 |
results = run_evaluation(
|
130 |
eval_request=eval_request,
|
@@ -404,7 +404,8 @@ if __name__ == "__main__":
|
|
404 |
local_debug = args.debug
|
405 |
# debug specific task by ping
|
406 |
if local_debug:
|
407 |
-
debug_model_names = ["mistralai/Mixtral-8x7B-Instruct-v0.1"]
|
|
|
408 |
# debug_model_names = ["TheBloke/Mixtral-8x7B-v0.1-GPTQ"]
|
409 |
debug_task_name = 'selfcheckgpt'
|
410 |
# debug_task_name = "mmlu"
|
@@ -415,7 +416,7 @@ if __name__ == "__main__":
|
|
415 |
if task_name != debug_task_name:
|
416 |
continue
|
417 |
eval_request = EvalRequest(
|
418 |
-
model=debug_model_name, private=False, status="", json_filepath="", precision="float16"
|
419 |
)
|
420 |
results = process_evaluation(task, eval_request)
|
421 |
else:
|
|
|
12 |
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
|
13 |
from src.backend.sort_queue import sort_models_by_priority
|
14 |
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Task
|
15 |
+
LIMIT=2
|
16 |
from src.backend.manage_requests import EvalRequest
|
17 |
from src.leaderboard.read_evals import EvalResult
|
18 |
|
|
|
124 |
|
125 |
|
126 |
def process_evaluation(task: Task, eval_request: EvalRequest) -> dict:
|
127 |
+
batch_size = 1
|
128 |
try:
|
129 |
results = run_evaluation(
|
130 |
eval_request=eval_request,
|
|
|
404 |
local_debug = args.debug
|
405 |
# debug specific task by ping
|
406 |
if local_debug:
|
407 |
+
# debug_model_names = ["mistralai/Mixtral-8x7B-Instruct-v0.1"]
|
408 |
+
debug_model_names = ["facebook/opt-1.3b"]
|
409 |
# debug_model_names = ["TheBloke/Mixtral-8x7B-v0.1-GPTQ"]
|
410 |
debug_task_name = 'selfcheckgpt'
|
411 |
# debug_task_name = "mmlu"
|
|
|
416 |
if task_name != debug_task_name:
|
417 |
continue
|
418 |
eval_request = EvalRequest(
|
419 |
+
model=debug_model_name, private=False, status="", json_filepath="", precision="float16", inference_framework="hf-chat"
|
420 |
)
|
421 |
results = process_evaluation(task, eval_request)
|
422 |
else:
|
src/backend/hflm_with_measurement.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import copy
|
2 |
import os
|
3 |
from datetime import timedelta
|
4 |
-
import
|
5 |
from pathlib import Path
|
6 |
from typing import List, Literal, Optional, Tuple, Union
|
7 |
|
@@ -22,6 +22,7 @@ from transformers.models.auto.modeling_auto import (
|
|
22 |
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
|
23 |
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
|
24 |
)
|
|
|
25 |
|
26 |
from lm_eval import utils
|
27 |
from lm_eval.api.instance import Instance
|
@@ -37,6 +38,31 @@ from lm_eval.models.utils import (
|
|
37 |
from lm_eval.models.huggingface import HFLM
|
38 |
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
class HFLMWithMeasurement(HFLM):
|
41 |
def __init__(self, **kwargs):
|
42 |
super().__init__(**kwargs)
|
@@ -59,14 +85,27 @@ class HFLMWithMeasurement(HFLM):
|
|
59 |
stopping_criteria = stop_sequences_criteria(
|
60 |
self.tokenizer, stop, context.shape[1], context.shape[0]
|
61 |
)
|
62 |
-
|
|
|
|
|
63 |
input_ids=context,
|
64 |
max_length=max_length,
|
65 |
stopping_criteria=stopping_criteria,
|
66 |
pad_token_id=self.tokenizer.pad_token_id,
|
67 |
use_cache=True,
|
|
|
68 |
**generation_kwargs,
|
69 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
def generate_until(
|
72 |
self, requests: List[Instance], disable_tqdm: bool = False
|
@@ -174,7 +213,7 @@ class HFLMWithMeasurement(HFLM):
|
|
174 |
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
|
175 |
|
176 |
# perform batched generation
|
177 |
-
cont = self._model_generate(
|
178 |
context=context_enc,
|
179 |
attention_mask=attn_masks,
|
180 |
stop=until,
|
@@ -196,7 +235,7 @@ class HFLMWithMeasurement(HFLM):
|
|
196 |
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
|
197 |
s = s.split(term)[0]
|
198 |
|
199 |
-
res.append((s,
|
200 |
|
201 |
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
|
202 |
pbar.update(1)
|
|
|
1 |
import copy
|
2 |
import os
|
3 |
from datetime import timedelta
|
4 |
+
from time import time
|
5 |
from pathlib import Path
|
6 |
from typing import List, Literal, Optional, Tuple, Union
|
7 |
|
|
|
22 |
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
|
23 |
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
|
24 |
)
|
25 |
+
from transformers import TextStreamer
|
26 |
|
27 |
from lm_eval import utils
|
28 |
from lm_eval.api.instance import Instance
|
|
|
38 |
from lm_eval.models.huggingface import HFLM
|
39 |
|
40 |
|
41 |
+
class StopWatch(TextStreamer):
|
42 |
+
def __init__(self, *args, **kwargs):
|
43 |
+
super().__init__(*args, **kwargs)
|
44 |
+
self.start_prefilling = None
|
45 |
+
self.prefilling_time = None
|
46 |
+
self.start_decoding = None
|
47 |
+
self.decoding_time = None
|
48 |
+
self.decoding_iterations = 0
|
49 |
+
|
50 |
+
def put(self, value):
|
51 |
+
if self.start_prefilling is None:
|
52 |
+
self.start_prefilling = time()
|
53 |
+
return
|
54 |
+
elif self.prefilling_time is None:
|
55 |
+
self.prefilling_time = time() - self.start_prefilling
|
56 |
+
self.start_decoding = time()
|
57 |
+
self.decoding_iterations += 1
|
58 |
+
return
|
59 |
+
|
60 |
+
def end(self):
|
61 |
+
if self.decoding_time is None and self.start_decoding is not None:
|
62 |
+
self.decoding_time = time() - self.start_decoding
|
63 |
+
return
|
64 |
+
|
65 |
+
|
66 |
class HFLMWithMeasurement(HFLM):
|
67 |
def __init__(self, **kwargs):
|
68 |
super().__init__(**kwargs)
|
|
|
85 |
stopping_criteria = stop_sequences_criteria(
|
86 |
self.tokenizer, stop, context.shape[1], context.shape[0]
|
87 |
)
|
88 |
+
stop_watch = StopWatch(self.tokenizer)
|
89 |
+
start = time()
|
90 |
+
res = self.model.generate(
|
91 |
input_ids=context,
|
92 |
max_length=max_length,
|
93 |
stopping_criteria=stopping_criteria,
|
94 |
pad_token_id=self.tokenizer.pad_token_id,
|
95 |
use_cache=True,
|
96 |
+
streamer=stop_watch,
|
97 |
**generation_kwargs,
|
98 |
)
|
99 |
+
end = time()
|
100 |
+
|
101 |
+
batch_size = context.shape[0]
|
102 |
+
output_length = stop_watch.decoding_iterations
|
103 |
+
|
104 |
+
end_to_end_time = (end - start) / batch_size
|
105 |
+
prefilling_time = stop_watch.prefilling_time / batch_size
|
106 |
+
decoding_time = stop_watch.decoding_time / batch_size
|
107 |
+
token_per_sec = output_length / decoding_time
|
108 |
+
return res, end_to_end_time, prefilling_time, token_per_sec
|
109 |
|
110 |
def generate_until(
|
111 |
self, requests: List[Instance], disable_tqdm: bool = False
|
|
|
213 |
kwargs["max_length"] = context_enc.shape[1] + max_gen_toks
|
214 |
|
215 |
# perform batched generation
|
216 |
+
cont, end_to_end_time, prefilling_time, token_per_sec = self._model_generate(
|
217 |
context=context_enc,
|
218 |
attention_mask=attn_masks,
|
219 |
stop=until,
|
|
|
235 |
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
|
236 |
s = s.split(term)[0]
|
237 |
|
238 |
+
res.append((s, end_to_end_time, prefilling_time, token_per_sec))
|
239 |
|
240 |
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
|
241 |
pbar.update(1)
|
src/backend/tasks/measurement_task_utils.py
CHANGED
@@ -9,12 +9,20 @@ def process_results_decorator(func):
|
|
9 |
# We process the results here
|
10 |
processed_results = [r[0] for r in results]
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Now call the original process_results with the processed results
|
16 |
result_dict = func(self, doc, processed_results, *args, **kwargs)
|
17 |
-
result_dict["
|
|
|
|
|
18 |
return result_dict
|
19 |
return wrapper
|
20 |
|
@@ -23,7 +31,9 @@ def aggregation_decorator(func):
|
|
23 |
@functools.wraps(func)
|
24 |
def wrapper(self, *args, **kwargs):
|
25 |
aggregation_list = func(self, *args, **kwargs)
|
26 |
-
aggregation_list["
|
|
|
|
|
27 |
return aggregation_list
|
28 |
return wrapper
|
29 |
|
@@ -32,7 +42,9 @@ def higher_is_better_decorator(func):
|
|
32 |
@functools.wraps(func)
|
33 |
def wrapper(self, *args, **kwargs):
|
34 |
higher_is_better_dict = func(self, *args, **kwargs)
|
35 |
-
higher_is_better_dict["
|
|
|
|
|
36 |
return higher_is_better_dict
|
37 |
return wrapper
|
38 |
|
|
|
9 |
# We process the results here
|
10 |
processed_results = [r[0] for r in results]
|
11 |
|
12 |
+
# end_to_end_time = end_to_end_time / batch_size
|
13 |
+
# prefilling_time = prefilling_time / batch_size
|
14 |
+
# token_per_sec = output_length / (decoding_time / batch_size)
|
15 |
+
|
16 |
+
end_to_end_time = sum([r[1] for r in results]) / len(results)
|
17 |
+
prefilling_time = sum([r[2] for r in results]) / len(results)
|
18 |
+
token_per_sec = sum([r[3] for r in results]) / len(results)
|
19 |
+
print(f"end_to_end_time: {end_to_end_time}, prefilling_time: {prefilling_time}, token_per_sec: {token_per_sec}")
|
20 |
|
21 |
# Now call the original process_results with the processed results
|
22 |
result_dict = func(self, doc, processed_results, *args, **kwargs)
|
23 |
+
result_dict["end_to_end_time"] = end_to_end_time
|
24 |
+
result_dict["prefilling_time"] = prefilling_time
|
25 |
+
result_dict["token_per_sec"] = token_per_sec
|
26 |
return result_dict
|
27 |
return wrapper
|
28 |
|
|
|
31 |
@functools.wraps(func)
|
32 |
def wrapper(self, *args, **kwargs):
|
33 |
aggregation_list = func(self, *args, **kwargs)
|
34 |
+
aggregation_list["end_to_end_time"] = mean
|
35 |
+
aggregation_list["prefilling_time"] = mean
|
36 |
+
aggregation_list["token_per_sec"] = mean
|
37 |
return aggregation_list
|
38 |
return wrapper
|
39 |
|
|
|
42 |
@functools.wraps(func)
|
43 |
def wrapper(self, *args, **kwargs):
|
44 |
higher_is_better_dict = func(self, *args, **kwargs)
|
45 |
+
higher_is_better_dict["end_to_end_time"] = False
|
46 |
+
higher_is_better_dict["prefilling_time"] = False
|
47 |
+
higher_is_better_dict["token_per_sec"] = True
|
48 |
return higher_is_better_dict
|
49 |
return wrapper
|
50 |
|