Spaces:
Sleeping
Sleeping
import time | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
# Load model and tokenizer once at startup | |
model_name = "Qwen/Qwen2.5-0.5B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") | |
print(f"Model loaded on: {model.device}") | |
# Define the generation function | |
def generate_text(prompt, max_new_tokens, num_beams): | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
input_length = inputs["input_ids"].shape[-1] | |
# Greedy search | |
start_time = time.time() | |
outputs_greedy = model.generate( | |
**inputs, | |
max_new_tokens=int(max_new_tokens), | |
num_beams=1, | |
do_sample=False, | |
) | |
greedy_time = time.time() - start_time | |
# Remove the prompt tokens from the output | |
generated_tokens_greedy = outputs_greedy[0][input_length:] | |
generated_text_greedy = tokenizer.decode(generated_tokens_greedy, skip_special_tokens=True) | |
# Beam search | |
start_time = time.time() | |
outputs_beam = model.generate( | |
**inputs, | |
num_beams=int(num_beams), | |
num_return_sequences=1, | |
max_new_tokens=int(max_new_tokens), | |
do_sample=False, | |
) | |
beam_time = time.time() - start_time | |
# Remove the prompt tokens as above | |
generated_tokens_beam = outputs_beam[0][input_length:] | |
generated_text_beam = tokenizer.decode(generated_tokens_beam, skip_special_tokens=True) | |
# Prepare outputs for better display formatting | |
greedy_details = ( | |
f"**Strategy:** Picks the most probable token at each step (deterministic).\n\n" | |
f"**Time:** {greedy_time:.2f} seconds" | |
) | |
beam_details = ( | |
f"**Strategy:** Explores {num_beams} beams concurrently and returns the top candidate.\n\n" | |
f"**Time:** {beam_time:.2f} seconds" | |
) | |
return greedy_details, generated_text_greedy, beam_details, generated_text_beam | |
with gr.Blocks() as demo: | |
# Informational header to help users understand the demo | |
gr.Markdown( | |
"# Beam Search Demo\n\n" | |
"This demo shows how two different text generation strategies work using the Qwen2.5-0.5B model. " | |
"The left side uses **greedy search**, which picks the most probable token at every generation step (deterministic), " | |
"while the right side uses **beam search**, which explores multiple beams concurrently to choose the most likely " | |
"sequence of tokens.\n\n" | |
"**Important:** This model works best with prompts that need completion rather than question-answering. For example, " | |
"instead of 'What is the capital of France?', use prompts like 'The capital of France is' or 'Here is a story about:'\n\n" | |
"Use the controls below to enter your prompt, adjust the maximum number of newly generated tokens, and set the " | |
"number of beams for beam search. The results for both strategies are displayed side by side for easy comparison.\n\n" | |
"Repo: [Beam Search Demo](https://github.com/cavit99/beam-search-demo)" | |
) | |
# Input components in a single column at the top | |
with gr.Column(): | |
gr.Markdown("## Input") | |
prompt_input = gr.Textbox(label="Prompt", value="Here is a funny love letter for you:") | |
max_tokens_input = gr.Slider(minimum=1, maximum=100, step=1, label="Max new tokens", value=50) | |
num_beams_input = gr.Slider(minimum=1, maximum=20, step=1, label="Number of beams", value=10) | |
generate_btn = gr.Button("Generate") | |
with gr.Row(): | |
with gr.Column(): | |
greedy_details_output = gr.Markdown(label="Greedy Search Details") | |
greedy_textbox_output = gr.Textbox(label="Greedy Search Generated Text", lines=10) | |
with gr.Column(): | |
beam_details_output = gr.Markdown(label="Beam Search Details") | |
beam_textbox_output = gr.Textbox(label="Beam Search Generated Text", lines=10) | |
# Connect the button click event to the generation function | |
generate_btn.click( | |
generate_text, | |
inputs=[prompt_input, max_tokens_input, num_beams_input], | |
outputs=[greedy_details_output, greedy_textbox_output, beam_details_output, beam_textbox_output] | |
) | |
if __name__ == "__main__": | |
demo.launch() |