import time from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr # Load model and tokenizer once at startup model_name = "Qwen/Qwen2.5-0.5B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") print(f"Model loaded on: {model.device}") # Define the generation function def generate_text(prompt, max_new_tokens, num_beams): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) input_length = inputs["input_ids"].shape[-1] # Greedy search start_time = time.time() outputs_greedy = model.generate( **inputs, max_new_tokens=int(max_new_tokens), num_beams=1, do_sample=False, ) greedy_time = time.time() - start_time # Remove the prompt tokens from the output generated_tokens_greedy = outputs_greedy[0][input_length:] generated_text_greedy = tokenizer.decode(generated_tokens_greedy, skip_special_tokens=True) # Beam search start_time = time.time() outputs_beam = model.generate( **inputs, num_beams=int(num_beams), num_return_sequences=1, max_new_tokens=int(max_new_tokens), do_sample=False, ) beam_time = time.time() - start_time # Remove the prompt tokens as above generated_tokens_beam = outputs_beam[0][input_length:] generated_text_beam = tokenizer.decode(generated_tokens_beam, skip_special_tokens=True) # Prepare outputs for better display formatting greedy_details = ( f"**Strategy:** Picks the most probable token at each step (deterministic).\n\n" f"**Time:** {greedy_time:.2f} seconds" ) beam_details = ( f"**Strategy:** Explores {num_beams} beams concurrently and returns the top candidate.\n\n" f"**Time:** {beam_time:.2f} seconds" ) return greedy_details, generated_text_greedy, beam_details, generated_text_beam with gr.Blocks() as demo: # Informational header to help users understand the demo gr.Markdown( "# Beam Search Demo\n\n" "This demo shows how two different text generation strategies work using the Qwen2.5-0.5B model. " "The left side uses **greedy search**, which picks the most probable token at every generation step (deterministic), " "while the right side uses **beam search**, which explores multiple beams concurrently to choose the most likely " "sequence of tokens.\n\n" "**Important:** This model works best with prompts that need completion rather than question-answering. For example, " "instead of 'What is the capital of France?', use prompts like 'The capital of France is' or 'Here is a story about:'\n\n" "Use the controls below to enter your prompt, adjust the maximum number of newly generated tokens, and set the " "number of beams for beam search. The results for both strategies are displayed side by side for easy comparison.\n\n" "Repo: [Beam Search Demo](https://github.com/cavit99/beam-search-demo)" ) # Input components in a single column at the top with gr.Column(): gr.Markdown("## Input") prompt_input = gr.Textbox(label="Prompt", value="Here is a funny love letter for you:") max_tokens_input = gr.Slider(minimum=1, maximum=100, step=1, label="Max new tokens", value=50) num_beams_input = gr.Slider(minimum=1, maximum=20, step=1, label="Number of beams", value=10) generate_btn = gr.Button("Generate") with gr.Row(): with gr.Column(): greedy_details_output = gr.Markdown(label="Greedy Search Details") greedy_textbox_output = gr.Textbox(label="Greedy Search Generated Text", lines=10) with gr.Column(): beam_details_output = gr.Markdown(label="Beam Search Details") beam_textbox_output = gr.Textbox(label="Beam Search Generated Text", lines=10) # Connect the button click event to the generation function generate_btn.click( generate_text, inputs=[prompt_input, max_tokens_input, num_beams_input], outputs=[greedy_details_output, greedy_textbox_output, beam_details_output, beam_textbox_output] ) if __name__ == "__main__": demo.launch()