Spaces:
Running
Running
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
|
6 |
+
def run_inference(review_text: str) -> str:
|
7 |
+
"""
|
8 |
+
Perform inference on the given wine review text and return the predicted wine variety.
|
9 |
+
|
10 |
+
Args:
|
11 |
+
review_text (str): Wine review text in the format "country [SEP] description".
|
12 |
+
|
13 |
+
Returns:
|
14 |
+
str: The predicted wine variety using the model's id2label mapping if available.
|
15 |
+
"""
|
16 |
+
# Define model and tokenizer identifiers
|
17 |
+
model_id = "spawn99/modernbert-wine-classification"
|
18 |
+
tokenizer_id = "answerdotai/ModernBERT-base"
|
19 |
+
|
20 |
+
# Load tokenizer and model
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
22 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
23 |
+
|
24 |
+
# Tokenize the input text
|
25 |
+
inputs = tokenizer(
|
26 |
+
review_text,
|
27 |
+
return_tensors="pt",
|
28 |
+
padding="max_length",
|
29 |
+
truncation=True,
|
30 |
+
max_length=256
|
31 |
+
)
|
32 |
+
|
33 |
+
model.eval()
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = model(**inputs)
|
36 |
+
logits = outputs.logits
|
37 |
+
|
38 |
+
# Determine prediction and map to label if available
|
39 |
+
pred = torch.argmax(logits, dim=-1).item()
|
40 |
+
variety = (
|
41 |
+
model.config.id2label.get(pred, str(pred))
|
42 |
+
if hasattr(model.config, "id2label") and model.config.id2label
|
43 |
+
else str(pred)
|
44 |
+
)
|
45 |
+
|
46 |
+
return variety
|
47 |
+
|
48 |
+
|
49 |
+
def predict_wine_variety(country: str, description: str) -> dict:
|
50 |
+
"""
|
51 |
+
Combine the provided country and description, then perform inference.
|
52 |
+
Enforces a maximum character limit of 750 on the description.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
country (str): The country of wine origin.
|
56 |
+
description (str): The wine review description.
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
dict: Dictionary containing the predicted wine variety or an error message if the limit is exceeded.
|
60 |
+
"""
|
61 |
+
# Validate description length
|
62 |
+
if len(description) > 750:
|
63 |
+
return {"error": "Description exceeds 750 character limit. Please shorten your input."}
|
64 |
+
|
65 |
+
# Capitalize input values and format the review text accordingly.
|
66 |
+
review_text = f"{country.capitalize()} [SEP] {description.capitalize()}"
|
67 |
+
predicted_variety = run_inference(review_text)
|
68 |
+
return {"Variety": predicted_variety}
|
69 |
+
|
70 |
+
|
71 |
+
if __name__ == "__main__":
|
72 |
+
iface = gr.Interface(
|
73 |
+
fn=predict_wine_variety,
|
74 |
+
inputs=[
|
75 |
+
gr.Textbox(label="Country", placeholder="Enter country of origin..."),
|
76 |
+
gr.Textbox(label="Description", placeholder="Enter wine review description...")
|
77 |
+
],
|
78 |
+
outputs=gr.JSON(label="Prediction"),
|
79 |
+
title="Wine Variety Predictor",
|
80 |
+
description="Predict the wine variety based on country and description.",
|
81 |
+
flagging="never"
|
82 |
+
)
|
83 |
+
iface.launch()
|