Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,312 Bytes
2a5f9fb df66f6e 2a5f9fb 1ffc326 f982b8e 1602bff 55cc480 1ffc326 2a5f9fb e279549 2a5f9fb 1ffc326 4ff9eef f155963 9833cdb 395eff6 1ffc326 2a5f9fb f155963 ad2d207 e894e3b ad2d207 f155963 efeee6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import os
from huggingface_hub import HfApi
# Info to change for your repository
# ----------------------------------
TOKEN = os.environ.get("TOKEN") # A read/write token for your org
OWNER = "speakleash" # Change to your org - don't forget to create a results and request file
DEVICE = "cpu" # "cuda:0" if you add compute
LIMIT = 20 # !!!! Should be None for actual evaluations!!!
# ----------------------------------
REPO_ID = f"{OWNER}/open_pl_llm_leaderboard"
QUEUE_REPO = f"{OWNER}/open_pl_llm_leaderboard_requests"
RESULTS_REPO = f"{OWNER}/open_pl_llm_leaderboard_results"
# If you setup a cache later, just change HF_HOME
CACHE_PATH=os.getenv("HF_HOME", ".")
print('CACHE_PATH', CACHE_PATH)
# Local caches
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
print('EVAL_RESULTS_PATH', EVAL_RESULTS_PATH)
print('EVAL_RESULTS_PATH absolute path:', os.path.abspath(EVAL_RESULTS_PATH))
try:
print('Content of EVAL_RESULTS_PATH:')
print("Files:", os.listdir(EVAL_RESULTS_PATH))
except Exception as e:
print(f"Error accessing EVAL_RESULTS_PATH: {e}")
API = HfApi(token=TOKEN)
|