import os from huggingface_hub import HfApi # Info to change for your repository # ---------------------------------- TOKEN = os.environ.get("TOKEN") # A read/write token for your org OWNER = "speakleash" # Change to your org - don't forget to create a results and request file DEVICE = "cpu" # "cuda:0" if you add compute LIMIT = 20 # !!!! Should be None for actual evaluations!!! # ---------------------------------- REPO_ID = f"{OWNER}/open_pl_llm_leaderboard" QUEUE_REPO = f"{OWNER}/open_pl_llm_leaderboard_requests" RESULTS_REPO = f"{OWNER}/open_pl_llm_leaderboard_results" # If you setup a cache later, just change HF_HOME CACHE_PATH=os.getenv("HF_HOME", ".") print('CACHE_PATH', CACHE_PATH) # Local caches EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk") EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk") print('EVAL_RESULTS_PATH', EVAL_RESULTS_PATH) print('EVAL_RESULTS_PATH absolute path:', os.path.abspath(EVAL_RESULTS_PATH)) try: print('Content of EVAL_RESULTS_PATH:') print("Files:", os.listdir(EVAL_RESULTS_PATH)) except Exception as e: print(f"Error accessing EVAL_RESULTS_PATH: {e}") API = HfApi(token=TOKEN)