File size: 7,706 Bytes
7860c23
 
 
51fd668
9f8c873
7860c23
9f8c873
7860c23
51fd668
7860c23
 
 
 
 
071c26a
 
 
 
 
9f8c873
51fd668
071c26a
 
 
 
7860c23
 
51fd668
 
7860c23
 
071c26a
7860c23
 
 
071c26a
7860c23
 
071c26a
 
7860c23
 
 
 
 
 
 
51fd668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7860c23
 
51fd668
7860c23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51fd668
7860c23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8c873
51fd668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8c873
51fd668
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
from typing import List, Optional, Union

import numpy as np
import requests
import torch
from pyannote.audio import Pipeline
from torchaudio import functional as F
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read


class ASRDiarizationPipeline:
    def __init__(
        self,
        asr_pipeline,
        diarization_pipeline,
    ):
        self.asr_pipeline = asr_pipeline
        self.diarization_pipeline = diarization_pipeline

        self.sampling_rate = self.asr_pipeline.feature_extractor.sampling_rate

    @classmethod
    def from_pretrained(
        cls,
        asr_model: Optional[str] = "openai/whisper-small",
        diarizer_model: Optional[str] = "pyannote/speaker-diarization",
        chunk_length_s: Optional[int] = 30,
        use_auth_token: Optional[Union[str, bool]] = True,
        **kwargs,
    ):
        asr_pipeline = pipeline(
            "automatic-speech-recognition",
            model=asr_model,
            chunk_length_s=chunk_length_s,
            use_auth_token=use_auth_token,
            **kwargs,
        )
        diarization_pipeline = Pipeline.from_pretrained(diarizer_model, use_auth_token=use_auth_token)
        cls(asr_pipeline, diarization_pipeline)

    def __call__(
        self,
        inputs: Union[np.ndarray, List[np.ndarray]],
        group_by_speaker: bool = True,
        **kwargs,
    ):
        """
        Transcribe the audio sequence(s) given as inputs to text.

        Args:
            inputs (`np.ndarray` or `bytes` or `str` or `dict`):
                The inputs is either :
                    - `str` that is the filename of the audio file, the file will be read at the correct sampling rate
                      to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system.
                    - `bytes` it is supposed to be the content of an audio file and is interpreted by *ffmpeg* in the
                      same way.
                    - (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`)
                        Raw audio at the correct sampling rate (no further check will be done)
                    - `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this
                      pipeline do the resampling. The dict must be in the format `{"sampling_rate": int, "raw":
                      np.array}` with optionally a `"stride": (left: int, right: int)` than can ask the pipeline to
                      treat the first `left` samples and last `right` samples to be ignored in decoding (but used at
                      inference to provide more context to the model). Only use `stride` with CTC models.

        Return:
            `Dict`: A dictionary with the following keys:
                - **text** (`str` ) -- The recognized text.
                - **chunks** (*optional(, `List[Dict]`)
                        When using `return_timestamps`, the `chunks` will become a list containing all the various text
                        chunks identified by the model, *e.g.* `[{"text": "hi ", "timestamps": (0.5,0.9), {"text":
                        "there", "timestamps": (1.0, 1.5)}]`. The original full text can roughly be recovered by doing
                        `"".join(chunk["text"] for chunk in output["chunks"])`.
        """
        inputs, diarizer_inputs = self.preprocess(inputs)

        diarization = self.diarization_pipeline(
            {"waveform": diarizer_inputs, "sample_rate": self.sampling_rate},
            **kwargs,
        )

        segments = diarization.for_json()["content"]

        new_segments = []
        prev_segment = cur_segment = segments[0]

        for i in range(1, len(segments)):
            cur_segment = segments[i]

            if cur_segment["label"] != prev_segment["label"] and i < len(segments):
                new_segments.append(
                    {
                        "segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["start"]},
                        "speaker": prev_segment["label"],
                    }
                )
                prev_segment = segments[i]

        new_segments.append(
            {
                "segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["end"]},
                "speaker": prev_segment["label"],
            }
        )

        asr_out = self.asr_pipeline(
            {"array": inputs, "sampling_rate": self.sampling_rate},
            return_timestamps=True,
            **kwargs,
        )
        transcript = asr_out["chunks"]

        end_timestamps = np.array([chunk["timestamp"][-1] for chunk in transcript])
        segmented_preds = []

        for segment in new_segments:
            end_time = segment["segment"]["end"]
            upto_idx = np.argmin(np.abs(end_timestamps - end_time))

            if group_by_speaker:
                segmented_preds.append(
                    {
                        "speaker": segment["speaker"],
                        "text": "".join([chunk["text"] for chunk in transcript[: upto_idx + 1]]),
                        "timestamp": {
                            "start": transcript[0]["timestamp"][0],
                            "end": transcript[upto_idx]["timestamp"][1],
                        },
                    }
                )
            else:
                for i in range(upto_idx + 1):
                    segmented_preds.append({"speaker": segment["speaker"], **transcript[i]})

            transcript = transcript[upto_idx + 1 :]
            end_timestamps = end_timestamps[upto_idx + 1 :]

        return segmented_preds

    def preprocess(self, inputs):
        if isinstance(inputs, str):
            if inputs.startswith("http://") or inputs.startswith("https://"):
                # We need to actually check for a real protocol, otherwise it's impossible to use a local file
                # like http_huggingface_co.png
                inputs = requests.get(inputs).content
            else:
                with open(inputs, "rb") as f:
                    inputs = f.read()

        if isinstance(inputs, bytes):
            inputs = ffmpeg_read(inputs, self.sampling_rate)

        if isinstance(inputs, dict):
            # Accepting `"array"` which is the key defined in `datasets` for better integration
            if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
                raise ValueError(
                    "When passing a dictionary to ASRDiarizePipeline, the dict needs to contain a "
                    '"raw" key containing the numpy array representing the audio and a "sampling_rate" key, '
                    "containing the sampling_rate associated with that array"
                )

            _inputs = inputs.pop("raw", None)
            if _inputs is None:
                # Remove path which will not be used from `datasets`.
                inputs.pop("path", None)
                _inputs = inputs.pop("array", None)
            in_sampling_rate = inputs.pop("sampling_rate")
            inputs = _inputs
            if in_sampling_rate != self.sampling_rate:
                inputs = F.resample(torch.from_numpy(inputs), in_sampling_rate, self.sampling_rate).numpy()

        if not isinstance(inputs, np.ndarray):
            raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
        if len(inputs.shape) != 1:
            raise ValueError("We expect a single channel audio input for ASRDiarizePipeline")

        diarizer_inputs = torch.from_numpy(inputs).float().unsqueeze(0)

        return inputs, diarizer_inputs