File size: 9,607 Bytes
7860c23
 
 
51fd668
9f8c873
7860c23
9f8c873
7860c23
51fd668
7860c23
 
 
 
 
071c26a
 
 
 
fc4914b
9f8c873
fc4914b
071c26a
 
 
 
fc4914b
 
7860c23
51fd668
 
7860c23
 
071c26a
7860c23
 
 
071c26a
7860c23
 
071c26a
fc4914b
7860c23
 
 
 
 
 
 
51fd668
fc4914b
 
 
 
 
 
 
51fd668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc4914b
 
 
51fd668
 
fc4914b
 
51fd668
fc4914b
 
51fd668
 
7860c23
 
51fd668
7860c23
 
 
 
 
fc4914b
 
7860c23
 
 
 
 
 
fc4914b
7860c23
fc4914b
7860c23
 
 
 
 
 
 
 
fc4914b
7860c23
 
 
 
 
 
 
 
51fd668
7860c23
 
 
 
 
fc4914b
7860c23
 
 
fc4914b
7860c23
fc4914b
7860c23
fc4914b
7860c23
 
 
 
 
 
 
fc4914b
7860c23
 
 
 
 
 
fc4914b
7860c23
 
 
 
9f8c873
fc4914b
 
51fd668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f8c873
51fd668
 
 
 
 
 
fc4914b
 
 
51fd668
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from typing import List, Optional, Union

import numpy as np
import requests
import torch
from pyannote.audio import Pipeline
from torchaudio import functional as F
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read


class ASRDiarizationPipeline:
    def __init__(
        self,
        asr_pipeline,
        diarization_pipeline,
    ):
        self.asr_pipeline = asr_pipeline
        self.sampling_rate = asr_pipeline.feature_extractor.sampling_rate

        self.diarization_pipeline = diarization_pipeline

    @classmethod
    def from_pretrained(
        cls,
        asr_model: Optional[str] = "openai/whisper-medium",
        *,
        diarizer_model: Optional[str] = "pyannote/speaker-diarization",
        chunk_length_s: Optional[int] = 30,
        use_auth_token: Optional[Union[str, bool]] = True,
        **kwargs,
    ):
        asr_pipeline = pipeline(
            "automatic-speech-recognition",
            model=asr_model,
            chunk_length_s=chunk_length_s,
            use_auth_token=use_auth_token,
            **kwargs,
        )
        diarization_pipeline = Pipeline.from_pretrained(diarizer_model, use_auth_token=use_auth_token)
        return cls(asr_pipeline, diarization_pipeline)

    def __call__(
        self,
        inputs: Union[np.ndarray, List[np.ndarray]],
        group_by_speaker: bool = True,
        **kwargs,
    ):
        """
        Transcribe the audio sequence(s) given as inputs to text and label with speaker information. The input audio
        is first passed to the speaker diarization pipeline, which returns timestamps for 'who spoke when'. The audio
        is then passed to the ASR pipeline, which returns utterance-level transcriptions and their corresponding
        timestamps. The speaker diarizer timestamps are aligned with the ASR transcription timestamps to give
        speaker-labelled transcriptions. We cannot use the speaker diarization timestamps alone to partition the
        transcriptions, as these timestamps may straddle across transcribed utterances from the ASR output. Thus, we
        find the diarizer timestamps that are closest to the ASR timestamps and partition here.

        Args:
            inputs (`np.ndarray` or `bytes` or `str` or `dict`):
                The inputs is either :
                    - `str` that is the filename of the audio file, the file will be read at the correct sampling rate
                      to get the waveform using *ffmpeg*. This requires *ffmpeg* to be installed on the system.
                    - `bytes` it is supposed to be the content of an audio file and is interpreted by *ffmpeg* in the
                      same way.
                    - (`np.ndarray` of shape (n, ) of type `np.float32` or `np.float64`)
                        Raw audio at the correct sampling rate (no further check will be done)
                    - `dict` form can be used to pass raw audio sampled at arbitrary `sampling_rate` and let this
                      pipeline do the resampling. The dict must be in the format `{"sampling_rate": int, "raw":
                      np.array}` with optionally a `"stride": (left: int, right: int)` than can ask the pipeline to
                      treat the first `left` samples and last `right` samples to be ignored in decoding (but used at
                      inference to provide more context to the model). Only use `stride` with CTC models.
            group_by_speaker (`bool`):
                Whether to group consecutive utterances by one speaker into a single segment. If False, will return
                transcriptions on a chunk-by-chunk basis.

        Return:
            A list of transcriptions. Each list item corresponds to one chunk / segment of transcription, and is a
            dictionary with the following keys:
                - **text** (`str` ) -- The recognized text.
                - **speaker** (`str`) -- The associated speaker.
                - **timestamps** (`tuple`) -- The start and end time for the chunk / segment.
        """
        inputs, diarizer_inputs = self.preprocess(inputs)

        diarization = self.diarization_pipeline(
            {"waveform": diarizer_inputs, "sample_rate": self.sampling_rate},
            **kwargs,
        )

        segments = diarization.for_json()["content"]

        # diarizer output may contain consecutive segments from the same speaker (e.g. {(0 -> 1, speaker_1), (1 -> 1.5, speaker_1), ...})
        # we combine these segments to give overall timestamps for each speaker's turn (e.g. {(0 -> 1.5, speaker_1), ...})
        new_segments = []
        prev_segment = cur_segment = segments[0]

        for i in range(1, len(segments)):
            cur_segment = segments[i]

            # check if we have changed speaker ("label")
            if cur_segment["label"] != prev_segment["label"] and i < len(segments):
                # add the start/end times for the super-segment to the new list
                new_segments.append(
                    {
                        "segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["start"]},
                        "speaker": prev_segment["label"],
                    }
                )
                prev_segment = segments[i]

        # add the last segment(s) if there was no speaker change
        new_segments.append(
            {
                "segment": {"start": prev_segment["segment"]["start"], "end": cur_segment["segment"]["end"]},
                "speaker": prev_segment["label"],
            }
        )

        asr_out = self.asr_pipeline(
            {"array": inputs, "sampling_rate": self.sampling_rate},
            return_timestamps=True,
            **kwargs,
        )
        transcript = asr_out["chunks"]

        # get the end timestamps for each chunk from the ASR output
        end_timestamps = np.array([chunk["timestamp"][-1] for chunk in transcript])
        segmented_preds = []

        # align the diarizer timestamps and the ASR timestamps
        for segment in new_segments:
            # get the diarizer end timestamp
            end_time = segment["segment"]["end"]
            # find the ASR end timestamp that is closest to the diarizer's end timestamp and cut the transcript to here
            upto_idx = np.argmin(np.abs(end_timestamps - end_time))

            if group_by_speaker:
                segmented_preds.append(
                    {
                        "speaker": segment["speaker"],
                        "text": "".join([chunk["text"] for chunk in transcript[: upto_idx + 1]]),
                        "timestamp": (transcript[0]["timestamp"][0], transcript[upto_idx]["timestamp"][1]),
                    }
                )
            else:
                for i in range(upto_idx + 1):
                    segmented_preds.append({"speaker": segment["speaker"], **transcript[i]})

            # crop the transcripts and timestamp lists according to the latest timestamp (for faster argmin)
            transcript = transcript[upto_idx + 1 :]
            end_timestamps = end_timestamps[upto_idx + 1 :]

        return segmented_preds

    # Adapted from transformers.pipelines.automatic_speech_recognition.AutomaticSpeechRecognitionPipeline.preprocess
    # (see https://github.com/huggingface/transformers/blob/238449414f88d94ded35e80459bb6412d8ab42cf/src/transformers/pipelines/automatic_speech_recognition.py#L417)
    def preprocess(self, inputs):
        if isinstance(inputs, str):
            if inputs.startswith("http://") or inputs.startswith("https://"):
                # We need to actually check for a real protocol, otherwise it's impossible to use a local file
                # like http_huggingface_co.png
                inputs = requests.get(inputs).content
            else:
                with open(inputs, "rb") as f:
                    inputs = f.read()

        if isinstance(inputs, bytes):
            inputs = ffmpeg_read(inputs, self.sampling_rate)

        if isinstance(inputs, dict):
            # Accepting `"array"` which is the key defined in `datasets` for better integration
            if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
                raise ValueError(
                    "When passing a dictionary to ASRDiarizePipeline, the dict needs to contain a "
                    '"raw" key containing the numpy array representing the audio and a "sampling_rate" key, '
                    "containing the sampling_rate associated with that array"
                )

            _inputs = inputs.pop("raw", None)
            if _inputs is None:
                # Remove path which will not be used from `datasets`.
                inputs.pop("path", None)
                _inputs = inputs.pop("array", None)
            in_sampling_rate = inputs.pop("sampling_rate")
            inputs = _inputs
            if in_sampling_rate != self.sampling_rate:
                inputs = F.resample(torch.from_numpy(inputs), in_sampling_rate, self.sampling_rate).numpy()

        if not isinstance(inputs, np.ndarray):
            raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
        if len(inputs.shape) != 1:
            raise ValueError("We expect a single channel audio input for ASRDiarizePipeline")

        # diarization model expects float32 torch tensor of shape `(channels, seq_len)`
        diarizer_inputs = torch.from_numpy(inputs).float()
        diarizer_inputs = diarizer_inputs.unsqueeze(0)

        return inputs, diarizer_inputs