import torch import os import gradio as gr import pytube as pt from speechbox import ASRDiarizationPipeline from huggingface_hub import login MODEL_NAME = "openai/whisper-small" device = 0 if torch.cuda.is_available() else "cpu" HF_TOKEN = os.environ.get("HF_TOKEN") pipe = ASRDiarizationPipeline.from_pretrained( asr_model=MODEL_NAME, device=device, use_auth_token=HF_TOKEN, ) def tuple_to_string(start_end_tuple, ndigits=1): return str((round(start_end_tuple[0], ndigits), round(start_end_tuple[1], ndigits))) def format_as_transcription(raw_segments, with_timestamps=False): if with_timestamps: return "\n\n".join([chunk["speaker"] + " " + tuple_to_string(chunk["timestamp"]) + chunk["text"] for chunk in raw_segments]) else: return "\n\n".join([chunk["speaker"] + chunk["text"] for chunk in raw_segments]) def transcribe(file_upload, with_timestamps): if file_upload is None: raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.") raw_segments = pipe(file_upload) transcription = format_as_transcription(raw_segments, with_timestamps=with_timestamps) return transcription def _return_yt_html_embed(yt_url): video_id = yt_url.split("?v=")[-1] HTML_str = ( f'
' "
" ) return HTML_str def yt_transcribe(yt_url, with_timestamps): yt = pt.YouTube(yt_url) html_embed_str = _return_yt_html_embed(yt_url) stream = yt.streams.filter(only_audio=True)[0] stream.download(filename="audio.mp3") text = pipe("audio.mp3") return html_embed_str, format_as_transcription(text, with_timestamps=with_timestamps) demo = gr.Blocks() mf_transcribe = gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio(source="upload", type="filepath"), gr.Checkbox(label="With timestamps?", value=True), ], outputs="text", layout="horizontal", theme="huggingface", title="Whisper Speaker Diarization: Transcribe Audio", description=( "Transcribe audio files with speaker diarization using [🤗 Speechbox](https://github.com/huggingface/speechbox/). " "Demo uses the pre-trained checkpoint [Whisper Small](https://huggingface.co/openai/whisper-small) for the ASR " "transcriptions and [pyannote.audio](https://huggingface.co/pyannote/speaker-diarization) to label the speakers." "\n\n" "Check out the repo here: https://github.com/huggingface/speechbox/" ), #examples=[ # ["./processed.wav", True], # ["./processed.wav", False], #], allow_flagging="never", ) yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[ gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), gr.Checkbox(label="With timestamps?", value=True), ], outputs=["html", "text"], layout="horizontal", theme="huggingface", title="Whisper Speaker Diarization: Transcribe YouTube", description=( "Transcribe YouTube videos with speaker diarization using [🤗 Speechbox](https://github.com/huggingface/speechbox/). " "Demo uses the pre-trained checkpoint [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) for the ASR " "transcriptions and [pyannote.audio](https://huggingface.co/pyannote/speaker-diarization) to label the speakers." "\n\n" "Check out the repo here: https://github.com/huggingface/speechbox/" ), examples=[ ["https://www.youtube.com/watch?v=9dAWIPixYxc", True], ["https://www.youtube.com/watch?v=9dAWIPixYxc", False], ], allow_flagging="never", ) with demo: gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"]) demo.launch(enable_queue=True)