Spaces:
Paused
Paused
Commit
·
40d04ab
1
Parent(s):
ec391b4
test
Browse files- Dockerfile +13 -0
- README.md +231 -13
- app.py +40 -59
- images/flask-hugging-face-overview.png +0 -0
- images/tree-flask-app.png +0 -0
- requirements.txt +5 -2
- static/flag.png +0 -0
- static/style.css +33 -0
- templates/home.html +49 -0
- templates/result.html +43 -0
- tree-flask-app.png +0 -0
Dockerfile
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.8
|
2 |
+
|
3 |
+
WORKDIR /workspace
|
4 |
+
|
5 |
+
ADD . /workspace
|
6 |
+
|
7 |
+
RUN pip install -r requirements.txt
|
8 |
+
|
9 |
+
CMD [ "python" , "/workspace/app.py" ]
|
10 |
+
|
11 |
+
RUN chown -R 42420:42420 /workspace
|
12 |
+
|
13 |
+
ENV HOME=/workspace
|
README.md
CHANGED
@@ -1,13 +1,231 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AI Deploy - Tutorial - Deploy an app for sentiment analysis with Hugging Face and Flask
|
2 |
+
|
3 |
+
> **Note** Access to the full documentation [here](https://docs.ovh.com/gb/en/publiccloud/ai/deploy/tuto-flask-hugging-face-sentiment-analysis/).
|
4 |
+
|
5 |
+
**Last updated 3rd November, 2022.**
|
6 |
+
|
7 |
+
> **Note**
|
8 |
+
> AI Deploy is in `beta`. During the beta-testing phase, the infrastructure’s availability and data longevity are not guaranteed. Please do not use this service for applications that are in production, as this phase is not complete.
|
9 |
+
>
|
10 |
+
> AI Deploy is covered by **[OVHcloud Public Cloud Special Conditions](https://storage.gra.cloud.ovh.net/v1/AUTH_325716a587c64897acbef9a4a4726e38/contracts/d2a208c-Conditions_particulieres_OVH_Stack-WE-9.0.pdf)**.
|
11 |
+
>
|
12 |
+
|
13 |
+
## Objective
|
14 |
+
|
15 |
+
The purpose of this tutorial is to show you how to deploy a web service for sentiment analysis on text using Hugging Face pretrained models.<br>
|
16 |
+
In order to do this, you will use Flask, an open-source micro framework for web development in Python. You will also learn how to build and use a custom Docker image for a Flask application.
|
17 |
+
|
18 |
+
Overview of the app:
|
19 |
+
|
20 |
+
{.thumbnail}
|
21 |
+
|
22 |
+
For more information about Hugging Face, please visit <https://huggingface.co/>.
|
23 |
+
|
24 |
+
## Requirements
|
25 |
+
|
26 |
+
- Access to the [OVHcloud Control Panel](https://www.ovh.com/auth/?action=gotomanager&from=https://www.ovh.co.uk/&ovhSubsidiary=GB);
|
27 |
+
- An AI Deploy project created inside a [Public Cloud project](https://www.ovhcloud.com/en-gb/public-cloud/) in your OVHcloud account;
|
28 |
+
- A [user for AI Deploy](https://docs.ovh.com/gb/en/publiccloud/ai/users/);
|
29 |
+
- [Docker](https://www.docker.com/get-started) installed on your local computer;
|
30 |
+
- Some knowledge about building image and [Dockerfile](https://docs.docker.com/engine/reference/builder/);
|
31 |
+
|
32 |
+
We also suggest you do some tests to find out which [Hugging Face model](https://huggingface.co/models) is right for your use case. Find examples on our [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/notebooks/natural-language-processing/text-classification/hugging-face/sentiment-analysis-twitter).
|
33 |
+
|
34 |
+
## Instructions
|
35 |
+
|
36 |
+
First, the tree structure of your folder should be as follows:
|
37 |
+
|
38 |
+

|
39 |
+
|
40 |
+
Find more information about the Flask application [here](https://flask.palletsprojects.com/en/2.0.x/quickstart/#a-minimal-application) to get ready to use it.
|
41 |
+
|
42 |
+
### Write the Flask application
|
43 |
+
|
44 |
+
Create a Python file named `app.py`.
|
45 |
+
|
46 |
+
Inside that file, import your required modules:
|
47 |
+
|
48 |
+
```python
|
49 |
+
from flask import Flask, jsonify, render_template, request, make_response
|
50 |
+
import transformers
|
51 |
+
```
|
52 |
+
|
53 |
+
Create Flask app:
|
54 |
+
|
55 |
+
```python
|
56 |
+
app = Flask(__name__)
|
57 |
+
```
|
58 |
+
|
59 |
+
Load Hugging Face models:
|
60 |
+
|
61 |
+
```python
|
62 |
+
# create a python dictionary for your models d = {<key>: <value>, <key>: <value>, ..., <key>: <value>}
|
63 |
+
dictOfModels = {"RoBERTa" : transformers.pipeline("sentiment-analysis", model="siebert/sentiment-roberta-large-english"), "BERT" : transformers.pipeline('sentiment-analysis', model="nlptown/bert-base-multilingual-uncased-sentiment")}
|
64 |
+
# create a list of keys to use them in the select part of the html code
|
65 |
+
listOfKeys = []
|
66 |
+
for key in dictOfModels :
|
67 |
+
listOfKeys.append(key)
|
68 |
+
```
|
69 |
+
|
70 |
+
Write the inference function:
|
71 |
+
|
72 |
+
```python
|
73 |
+
def get_prediction(message,model):
|
74 |
+
# inference
|
75 |
+
results = model(message)
|
76 |
+
return results
|
77 |
+
```
|
78 |
+
|
79 |
+
Define the GET method:
|
80 |
+
|
81 |
+
```python
|
82 |
+
@app.route('/', methods=['GET'])
|
83 |
+
def get():
|
84 |
+
# in the select we will have each key of the list in option
|
85 |
+
return render_template("home.html", len = len(listOfKeys), listOfKeys = listOfKeys)
|
86 |
+
```
|
87 |
+
|
88 |
+
Define the POST method:
|
89 |
+
|
90 |
+
```python
|
91 |
+
@app.route('/', methods=['POST'])
|
92 |
+
def predict():
|
93 |
+
message = request.form['message']
|
94 |
+
# choice of the model
|
95 |
+
results = get_prediction(message, dictOfModels[request.form.get("model_choice")])
|
96 |
+
print(f'User selected model : {request.form.get("model_choice")}')
|
97 |
+
my_prediction = f'The feeling of this text is {results[0]["label"]} with probability of {results[0]["score"]*100}%.'
|
98 |
+
return render_template('result.html', text = f'{message}', prediction = my_prediction)
|
99 |
+
```
|
100 |
+
|
101 |
+
Start your app:
|
102 |
+
|
103 |
+
```python
|
104 |
+
if __name__ == '__main__':
|
105 |
+
# starting app
|
106 |
+
app.run(debug=True,host='0.0.0.0')
|
107 |
+
```
|
108 |
+
|
109 |
+
### Write the requirements.txt file for the application
|
110 |
+
|
111 |
+
The `requirements.txt` file will allow us to write all the modules needed to make our application work. This file will be useful when writing the `Dockerfile`.
|
112 |
+
|
113 |
+
```console
|
114 |
+
Flask==1.1.2
|
115 |
+
transformers==4.4.2
|
116 |
+
torch==1.6.0
|
117 |
+
```
|
118 |
+
|
119 |
+
Here we will mainly discuss how to write the `app.py` code, the `requirements.txt` file and the `Dockerfile`. If you want to see the whole code, please refer to the [GitHub repository](https://github.com/ovh/ai-training-examples/tree/main/apps/flask/sentiment-analysis-hugging-face-app).
|
120 |
+
|
121 |
+
### Write the Dockerfile for the application
|
122 |
+
|
123 |
+
Your `Dockerfile` should start with the `FROM` instruction indicating the parent image to use. In our case we choose to start from a Python image:
|
124 |
+
|
125 |
+
```console
|
126 |
+
FROM python:3.8
|
127 |
+
```
|
128 |
+
|
129 |
+
Create the home directory and add your files to it:
|
130 |
+
|
131 |
+
```console
|
132 |
+
WORKDIR /workspace
|
133 |
+
ADD . /workspace
|
134 |
+
```
|
135 |
+
|
136 |
+
Install the `requirements.txt` file which contains your needed Python modules using a `pip install ...` command:
|
137 |
+
|
138 |
+
```console
|
139 |
+
RUN pip install -r requirements.txt
|
140 |
+
```
|
141 |
+
|
142 |
+
Define your default launching command to start the application:
|
143 |
+
|
144 |
+
```console
|
145 |
+
CMD [ "python" , "/workspace/app.py" ]
|
146 |
+
```
|
147 |
+
|
148 |
+
Give correct access rights to **ovhcloud user** (`42420:42420`):
|
149 |
+
|
150 |
+
```console
|
151 |
+
RUN chown -R 42420:42420 /workspace
|
152 |
+
ENV HOME=/workspace
|
153 |
+
```
|
154 |
+
|
155 |
+
### Build the Docker image from the Dockerfile
|
156 |
+
|
157 |
+
Launch the following command from the **Dockerfile** directory to build your application image:
|
158 |
+
|
159 |
+
```console
|
160 |
+
docker build . -t sentiment_analysis_app:latest
|
161 |
+
```
|
162 |
+
|
163 |
+
> **Note**
|
164 |
+
> The dot `.` argument indicates that your build context (place of the **Dockerfile** and other needed files) is the current directory.
|
165 |
+
>
|
166 |
+
> The `-t` argument allows you to choose the identifier to give to your image. Usually image identifiers are composed of a **name** and a **version tag** `<name>:<version>`. For this example we chose **sentiment_analysis_app:latest**.
|
167 |
+
>
|
168 |
+
|
169 |
+
### Test it locally (optional)
|
170 |
+
|
171 |
+
Launch the following **Docker command** to launch your application locally on your computer:
|
172 |
+
|
173 |
+
```console
|
174 |
+
docker run --rm -it -p 5000:5000 --user=42420:42420 sentiment_analysis_app:latest
|
175 |
+
```
|
176 |
+
|
177 |
+
> **Note**
|
178 |
+
> The `-p 5000:5000` argument indicates that you want to execute a port redirection from the port **5000** of your local machine into the port **5000** of the Docker container. The port **5000** is the default port used by **Flask** applications.
|
179 |
+
>
|
180 |
+
|
181 |
+
> **Warning**
|
182 |
+
> Don't forget the `--user=42420:42420` argument if you want to simulate the exact same behaviour that will occur on **AI Deploy apps**. It executes the Docker container as the specific OVHcloud user (user **42420:42420**).
|
183 |
+
>
|
184 |
+
|
185 |
+
Once started, your application should be available on `http://localhost:5000`.
|
186 |
+
|
187 |
+
### Push the image into the shared registry
|
188 |
+
|
189 |
+
> **Warning**
|
190 |
+
> The shared registry of AI Deploy should only be used for testing purposes. Please consider attaching your own Docker registry. More information about this can be found [here](https://docs.ovh.com/gb/en/publiccloud/ai/training/add-private-registry/).
|
191 |
+
>
|
192 |
+
|
193 |
+
Find the adress of your shared registry by launching this command:
|
194 |
+
|
195 |
+
```console
|
196 |
+
ovhai registry list
|
197 |
+
```
|
198 |
+
|
199 |
+
Login on the shared registry with your usual OpenStack credentials:
|
200 |
+
|
201 |
+
```console
|
202 |
+
docker login -u <user> -p <password> <shared-registry-address>
|
203 |
+
```
|
204 |
+
|
205 |
+
Push the compiled image into the shared registry:
|
206 |
+
|
207 |
+
```console
|
208 |
+
docker tag sentiment_analysis_app:latest <shared-registry-address>/sentiment_analysis_app:latest
|
209 |
+
docker push <shared-registry-address>/sentiment_analysis_app:latest
|
210 |
+
```
|
211 |
+
|
212 |
+
### Launch the AI Deploy app
|
213 |
+
|
214 |
+
The following command starts a new app running your Flask application:
|
215 |
+
|
216 |
+
```console
|
217 |
+
ovhai app run --default-http-port 5000 --cpu 4 <shared-registry-address>/sentiment_analysis_app:latest
|
218 |
+
```
|
219 |
+
|
220 |
+
> **Note**
|
221 |
+
> `--default-http-port 5000` indicates that the port to reach on the app URL is the `5000`.
|
222 |
+
>
|
223 |
+
> `--cpu 4` indicates that we request 4 CPUs for that app.
|
224 |
+
>
|
225 |
+
> Consider adding the `--unsecure-http` attribute if you want your application to be reachable without any authentication.
|
226 |
+
>
|
227 |
+
|
228 |
+
## Go further
|
229 |
+
|
230 |
+
- You can also imagine deploying an Object Detection model with **Flask** in this [tutorial](https://docs.ovh.com/gb/en/publiccloud/ai/deploy/web-service-yolov5/).
|
231 |
+
- Discover an other tool to deploy easily AI models: **Gradio**. Refer to this [documentation](https://docs.ovh.com/gb/en/publiccloud/ai/deploy/tuto-gradio-sketch-recognition/).
|
app.py
CHANGED
@@ -1,61 +1,42 @@
|
|
1 |
-
from
|
2 |
-
from
|
|
|
3 |
|
4 |
-
#
|
5 |
app = Flask(__name__)
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
message = data.get("message", "")
|
43 |
-
history = data.get("history", [])
|
44 |
-
system_message = data.get("system_message", "You are a friendly chatbot.")
|
45 |
-
max_tokens = data.get("max_tokens", 512)
|
46 |
-
temperature = data.get("temperature", 0.7)
|
47 |
-
top_p = data.get("top_p", 0.95)
|
48 |
-
|
49 |
-
# Validate inputs
|
50 |
-
if not isinstance(history, list) or not all(isinstance(pair, list) for pair in history):
|
51 |
-
return jsonify({"error": "Invalid history format. It should be a list of [message, response] pairs."}), 400
|
52 |
-
|
53 |
-
# Generate AI response
|
54 |
-
response = generate_response(message, history, system_message, max_tokens, temperature, top_p)
|
55 |
-
|
56 |
-
return jsonify({"response": response})
|
57 |
-
except Exception as e:
|
58 |
-
return jsonify({"error": str(e)}), 500
|
59 |
-
|
60 |
-
if __name__ == "__main__":
|
61 |
-
app.run(debug=True)
|
|
|
1 |
+
# import objects from the Flask model
|
2 |
+
from flask import Flask, jsonify, render_template, request, make_response
|
3 |
+
import transformers
|
4 |
|
5 |
+
# creating flask app
|
6 |
app = Flask(__name__)
|
7 |
+
|
8 |
+
# create a python dictionary for your models d = {<key>: <value>, <key>: <value>, ..., <key>: <value>}
|
9 |
+
dictOfModels = {"BERT" : transformers.pipeline('sentiment-analysis', model="nlptown/bert-base-multilingual-uncased-sentiment")} # feel free to add several models
|
10 |
+
|
11 |
+
listOfKeys = []
|
12 |
+
for key in dictOfModels :
|
13 |
+
listOfKeys.append(key)
|
14 |
+
|
15 |
+
# inference fonction
|
16 |
+
def get_prediction(message,model):
|
17 |
+
# inference
|
18 |
+
results = model(message)
|
19 |
+
return results
|
20 |
+
|
21 |
+
# get method
|
22 |
+
@app.route('/', methods=['GET'])
|
23 |
+
def get():
|
24 |
+
# in the select we will have each key of the list in option
|
25 |
+
return render_template("home.html", len = len(listOfKeys), listOfKeys = listOfKeys)
|
26 |
+
|
27 |
+
|
28 |
+
# post method
|
29 |
+
@app.route('/', methods=['POST'])
|
30 |
+
def predict():
|
31 |
+
message = request.form['message']
|
32 |
+
|
33 |
+
# choice of the model
|
34 |
+
results = get_prediction(message, dictOfModels[request.form.get("model_choice")])
|
35 |
+
print(f'User selected model : {request.form.get("model_choice")}')
|
36 |
+
my_prediction = f'The feeling of this text is {results[0]["label"]} with probability of {results[0]["score"]*100}%.'
|
37 |
+
|
38 |
+
return render_template('result.html', text = f'{message}', prediction = my_prediction)
|
39 |
+
|
40 |
+
if __name__ == '__main__':
|
41 |
+
# starting app
|
42 |
+
app.run(debug=True,host='0.0.0.0')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
images/flask-hugging-face-overview.png
ADDED
![]() |
images/tree-flask-app.png
ADDED
![]() |
requirements.txt
CHANGED
@@ -1,2 +1,5 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
1 |
+
Flask==2.1.0
|
2 |
+
|
3 |
+
transformers==4.24.0
|
4 |
+
|
5 |
+
torch==1.6.0
|
static/flag.png
ADDED
![]() |
static/style.css
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
html,
|
2 |
+
body {
|
3 |
+
height: 100%;
|
4 |
+
}
|
5 |
+
|
6 |
+
body {
|
7 |
+
text-align: left;
|
8 |
+
margin: 0px;
|
9 |
+
padding: 0px;
|
10 |
+
background-color: #ffffff;
|
11 |
+
}
|
12 |
+
|
13 |
+
form {
|
14 |
+
text-align: left;
|
15 |
+
height: 100%;
|
16 |
+
}
|
17 |
+
|
18 |
+
.container {
|
19 |
+
padding: 10px;
|
20 |
+
}
|
21 |
+
|
22 |
+
.text_bottom {
|
23 |
+
bottom: 0;
|
24 |
+
}
|
25 |
+
|
26 |
+
#demo {
|
27 |
+
color: #111;
|
28 |
+
font-family: 'Helvetica Neue', sans-serif;
|
29 |
+
font-size: 22px;
|
30 |
+
line-height: 24px;
|
31 |
+
margin: 0 0 24px;
|
32 |
+
text-justify: inter-word;
|
33 |
+
}
|
templates/home.html
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!doctype html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="utf-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
|
6 |
+
<link rel="stylesheet" href="//stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css" integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS" crossorigin="anonymous">
|
7 |
+
<style>
|
8 |
+
.bd-placeholder-img {
|
9 |
+
font-size: 1.125rem;
|
10 |
+
text-anchor: start;
|
11 |
+
}
|
12 |
+
|
13 |
+
@media (min-width: 768px) {
|
14 |
+
.bd-placeholder-img-lg {
|
15 |
+
font-size: 150%;
|
16 |
+
}
|
17 |
+
}
|
18 |
+
</style>
|
19 |
+
<link rel="stylesheet" href="/static/style.css">
|
20 |
+
<title>Sentiment analysis on Tweets using Hugging Face</title>
|
21 |
+
</head>
|
22 |
+
<body>
|
23 |
+
<form method=post enctype=multipart/form-data>
|
24 |
+
<img src="static/flag.png" width="100%">
|
25 |
+
<div style="height:80px"></div>
|
26 |
+
<div class="container">
|
27 |
+
<h3 style= "color:#030d9b"><i>OVHcloud - Sentiment analysis on Tweets using Hugging Face</i></h3>
|
28 |
+
<hr>
|
29 |
+
<div style="height:50px"></div>
|
30 |
+
<h5>Write your text (in english): </h5>
|
31 |
+
<textarea name="message" rows="4" cols="50"></textarea>
|
32 |
+
<br/>
|
33 |
+
<div style= "height:40px"></div>
|
34 |
+
<h5>Select Hugging Face model: </h5>
|
35 |
+
<select name="model_choice">
|
36 |
+
{%for i in range(0, len)%}
|
37 |
+
<option>{{listOfKeys[i]}}</option>
|
38 |
+
{%endfor%}
|
39 |
+
</select>
|
40 |
+
<div style= "height:50px"></div>
|
41 |
+
<button class="btn btn-lg btn-primary btn-block" type="submit">Submit</button>
|
42 |
+
<div style= "height:100px"></div>
|
43 |
+
<p align="center">If you want to know more about AI Training, go <a href="https://www.ovhcloud.com/fr/public-cloud/ai-training/">here</a>.</p>
|
44 |
+
</form>
|
45 |
+
<script src="//code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script>
|
46 |
+
<script src="//cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js" integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut" crossorigin="anonymous"></script>
|
47 |
+
<script src="//stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js" integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k" crossorigin="anonymous"></script>
|
48 |
+
</body>
|
49 |
+
</html>
|
templates/result.html
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!doctype html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="utf-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
|
6 |
+
<link rel="stylesheet" href="//stackpath.bootstrapcdn.com/bootstrap/4.2.1/css/bootstrap.min.css" integrity="sha384-GJzZqFGwb1QTTN6wy59ffF1BuGJpLSa9DkKMp0DgiMDm4iYMj70gZWKYbI706tWS" crossorigin="anonymous">
|
7 |
+
<style>
|
8 |
+
.bd-placeholder-img {
|
9 |
+
font-size: 1.125rem;
|
10 |
+
text-anchor: start;
|
11 |
+
}
|
12 |
+
|
13 |
+
@media (min-width: 768px) {
|
14 |
+
.bd-placeholder-img-lg {
|
15 |
+
font-size: 150%;
|
16 |
+
}
|
17 |
+
}
|
18 |
+
</style>
|
19 |
+
<link rel="stylesheet" href="/static/style.css">
|
20 |
+
<title>Sentiment analysis on Tweets using Hugging Face</title>
|
21 |
+
</head>
|
22 |
+
<body>
|
23 |
+
<form method=post enctype=multipart/form-data>
|
24 |
+
<img src="static/flag.png" width="100%">
|
25 |
+
<div style="height:80px"></div>
|
26 |
+
<div class="container">
|
27 |
+
<h3 style= "color:#030d9b"><i>OVHcloud - Sentiment analysis on Tweets using Hugging Face</i></h3>
|
28 |
+
<hr>
|
29 |
+
<div style="height:50px"></div>
|
30 |
+
<h4 style= "color:#030d9b">Your text:</h4>
|
31 |
+
<p id="demo">{{ text }}</p>
|
32 |
+
<div style="height:50px"></div>
|
33 |
+
<h4 style= "color:#030d9b">Result:</h4>
|
34 |
+
<p id="demo">{{ prediction }}</p>
|
35 |
+
</div>
|
36 |
+
<div style= "height:200px"></div>
|
37 |
+
<p align="center">If you want to know more about AI Training, go <a href="https://www.ovhcloud.com/fr/public-cloud/ai-training/">here</a>.</p>
|
38 |
+
</form>
|
39 |
+
<script src="//code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" crossorigin="anonymous"></script>
|
40 |
+
<script src="//cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.6/umd/popper.min.js" integrity="sha384-wHAiFfRlMFy6i5SRaxvfOCifBUQy1xHdJ/yoi7FRNXMRBu5WHdZYu1hA6ZOblgut" crossorigin="anonymous"></script>
|
41 |
+
<script src="//stackpath.bootstrapcdn.com/bootstrap/4.2.1/js/bootstrap.min.js" integrity="sha384-B0UglyR+jN6CkvvICOB2joaf5I4l3gm9GU6Hc1og6Ls7i6U/mkkaduKaBhlAXv9k" crossorigin="anonymous"></script>
|
42 |
+
</body>
|
43 |
+
</html>
|
tree-flask-app.png
ADDED
![]() |