srikar-v05
commited on
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: pink
|
5 |
-
colorTo: green
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.44.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Simple_image_search_using_GOT_OCR_2.0
|
3 |
+
app_file: app.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
sdk_version: 4.44.0
|
|
|
|
|
6 |
---
|
|
|
|
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
from transformers import AutoModel, AutoTokenizer
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
+
import warnings
|
8 |
+
import re
|
9 |
+
|
10 |
+
# Suppress warnings
|
11 |
+
warnings.simplefilter("ignore")
|
12 |
+
|
13 |
+
# Retrieve Hugging Face token
|
14 |
+
hf_token = os.getenv("HF_TOKEN")
|
15 |
+
|
16 |
+
# Load tokenizer and model
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, use_auth_token=hf_token)
|
18 |
+
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True,
|
19 |
+
low_cpu_mem_usage=True,
|
20 |
+
device_map='cuda' if torch.cuda.is_available() else 'cpu',
|
21 |
+
use_safetensors=True,
|
22 |
+
pad_token_id=tokenizer.eos_token_id,
|
23 |
+
use_auth_token=hf_token)
|
24 |
+
model = model.eval()
|
25 |
+
|
26 |
+
# Global variable to store OCR result
|
27 |
+
ocr_result = ""
|
28 |
+
|
29 |
+
# Perform OCR function
|
30 |
+
def perform_ocr(image):
|
31 |
+
global ocr_result
|
32 |
+
|
33 |
+
# Convert the numpy array to a PIL image
|
34 |
+
pil_image = Image.fromarray(image)
|
35 |
+
|
36 |
+
# Save the image temporarily
|
37 |
+
image_file = "temp_image.png"
|
38 |
+
pil_image.save(image_file)
|
39 |
+
|
40 |
+
# Perform OCR with the model
|
41 |
+
with torch.no_grad():
|
42 |
+
ocr_result = model.chat(tokenizer, image_file, ocr_type='ocr')
|
43 |
+
|
44 |
+
# Optionally remove the temporary image file
|
45 |
+
os.remove(image_file)
|
46 |
+
|
47 |
+
return ocr_result
|
48 |
+
|
49 |
+
# Function to highlight search term with a different color (e.g., light blue)
|
50 |
+
def highlight_text(text, query):
|
51 |
+
# Use regex to wrap the search query with a span for styling
|
52 |
+
pattern = re.compile(re.escape(query), re.IGNORECASE)
|
53 |
+
highlighted_text = pattern.sub(f"<span style='background-color: #ADD8E6; color: black;'>{query}</span>", text)
|
54 |
+
return highlighted_text
|
55 |
+
|
56 |
+
# Search functionality to search within OCR result, highlight, and return the modified text
|
57 |
+
def search_text(query):
|
58 |
+
# If no query is provided, return the original OCR result
|
59 |
+
if not query:
|
60 |
+
return ocr_result, "No matches found."
|
61 |
+
|
62 |
+
# Highlight the searched term in the OCR text
|
63 |
+
highlighted_result = highlight_text(ocr_result, query)
|
64 |
+
|
65 |
+
# Split OCR result into lines and search for the query
|
66 |
+
lines = ocr_result.split('\n')
|
67 |
+
matching_lines = [line for line in lines if query.lower() in line.lower()]
|
68 |
+
|
69 |
+
if matching_lines:
|
70 |
+
return highlighted_result, '\n'.join(matching_lines) # Return highlighted text and matched lines
|
71 |
+
else:
|
72 |
+
return highlighted_result, "No matches found."
|
73 |
+
|
74 |
+
# Set up Gradio interface
|
75 |
+
with gr.Blocks() as demo:
|
76 |
+
# Section for uploading image and getting OCR results
|
77 |
+
with gr.Row():
|
78 |
+
with gr.Column():
|
79 |
+
image_input = gr.Image(type="numpy", label="Upload Image")
|
80 |
+
ocr_output = gr.HTML(label="OCR Output") # Changed to HTML for displaying highlighted text
|
81 |
+
ocr_button = gr.Button("Run OCR")
|
82 |
+
|
83 |
+
# Section for searching within the OCR result
|
84 |
+
with gr.Row():
|
85 |
+
with gr.Column():
|
86 |
+
search_input = gr.Textbox(label="Search Text")
|
87 |
+
search_output = gr.HTML(label="Search Result") # Separate output for search matches
|
88 |
+
search_button = gr.Button("Search in OCR Text")
|
89 |
+
|
90 |
+
# Define button actions
|
91 |
+
ocr_button.click(perform_ocr, inputs=image_input, outputs=ocr_output)
|
92 |
+
search_button.click(search_text, inputs=search_input, outputs=[ocr_output, search_output])
|
93 |
+
|
94 |
+
# Launch the Gradio interface
|
95 |
+
demo.launch(share=True)
|