File size: 5,531 Bytes
d7f7f62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import argparse
import os
import pandas as pd
import json
from tree_search_icd import get_icd_codes
from tqdm import tqdm
import csv
import streamlit as st
import tempfile
from pathlib import Path
from io import StringIO

# def process_medical_notes(file_path,model_name):
# def process_medical_notes(input_dir, output_file, model_name):
    
#     code_map = {}
    
#     if not os.path.isdir(input_dir):
#         raise ValueError("The specified input directory does not exist.")

#     # Process each file in the input directory
#     for files in tqdm(os.listdir(input_dir)):
#         file_path = os.path.join(input_dir, files)
#         print(file_path)
#         with open(file_path, "r", encoding="utf-8") as file:
#             medical_note = file.read()
    
#     if not os.path.isfile(file_path):
#         print(f"File does not exist: {file_path}")
#         return None
    
  
#     # if os.path.isfile(file_path):
#     #     st.write(f"File exists: {file_path}")
    
#     # try:
        
#     #     with open(file_path, "r",encoding="utf-8") as txtfile:
#     #         st.write(file_path)
#     #         medical_note = txtfile.read()
            
#     #         st.write(f"Content of the file: {medical_note[:1000]}")  # Print the first 1000 characters
#     # except Exception as e:
#     #     print(f"Error reading file: {e}")
#     #     return None
    
#     # print(f"File read successfully. Content length: {len(medical_note)}")

#     #print(medical_note)   
#     icd_codes = get_icd_codes(medical_note, model_name)
#     print(icd_codes)
#     # return icd_codes
# #     print(icd_codes)
# #     code_map[files] = icd_codes

#     with open(output_file, "w") as f:
#         json.dump(code_map, f, indent=4)
   

# if __name__ == "__main__":
#     parser = argparse.ArgumentParser(description="Process medical notes to extract ICD codes using a specified model.")
#     parser.add_argument("--input_dir", help="Directory containing the medical text files")
#     parser.add_argument("--output_file", help="File to save the extracted ICD codes in JSON format")
#     parser.add_argument("--model_name", default="llama3-70b-8192", help="Model name to use for ICD code extraction")

#     args = parser.parse_args()
#     process_medical_notes(args.input_dir, args.output_file, args.model_name)

def process_medical_notes(filepath, model_name):
    
    
    try:
        for txtfile in filepath:
           with open(filepath, "r",encoding="utf-8") as txtfile:
               medical_note = txtfile.read()
            
          
    except Exception as e:
        # print(f"Error reading file: {e}")
        return None
    
   
    icd_codes = get_icd_codes(medical_note, model_name)
    return icd_codes



def add_custom_css():
    st.markdown(
        """

        <style>

        /* Remove padding around the main block */

        .block-container {

            padding: 1rem;

        }

        /* Remove padding around the top */

        header, footer, .reportview-container .main .block-container {

            padding: 5;

        }

        /* Fullscreen layout adjustments */

        .css-1d391kg { 

            padding: 5; 

        }



        h1 {

            text-align: center;

        }

         .table-wrapper {

            text-align: center;

        }









        </style>

        """,
        unsafe_allow_html=True,
    )
def main():
    st.set_page_config(layout="wide",page_icon='πŸ”Ž',page_title='ICD Identifier') 
    add_custom_css()
    st.title("ICD Code Extractor From Medical Notes")
  
    col1, col2 = st.columns([1, 5])
    with col2:
        
        file_uploads=st.file_uploader('Choose Medical Note File',type='txt', accept_multiple_files=True)
     
        submit = st.button("Submit")
       
    
    with col1:
         model_name = st.selectbox(
            "Select Model",
            ["llama3-70b-8192", "mixtral-8x7b-32768"],
            index=0  # Default model selected
        )

    if submit :
        
        for file_input in file_uploads:
            file_name = Path(file_input.name).name
            with tempfile.NamedTemporaryFile(delete=False, suffix='.txt') as temp_file:
        
                temp_file.write(file_input.getbuffer())
                temp_file.flush()
                file_paths = temp_file.name
                response=process_medical_notes(file_paths, model_name)
                res_data=pd.DataFrame(response,columns=['ICD Code','Code Description','Evidence From Notes'])
                with col2:
                    

                #     st.markdown(f"""
                    
                         
                #     <div class="custom-table-container" >
                #         <h4>Case Id: {file_name}</h4>
                 
                #         <div class="table-wrapper"  >
                #             {res_data.to_html(classes='table-wrapper', index=False)}
                #         </div>
                #     </div>
                  
                   
                # """, unsafe_allow_html=True)
                    st.markdown(f"""

                    <h5>Case Id: {file_name}</h5>

                    """, unsafe_allow_html=True)
                    st.markdown(res_data.style.hide(axis="index").to_html(), unsafe_allow_html=True)

                # st.write(response)

if __name__=="__main__":
    main()