Spaces:
Build error
Build error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the quantized model and tokenizer from the Hub | |
model = AutoModelForCausalLM.from_pretrained("llava-hf/llava-1.5-7b-hf") | |
tokenizer = AutoTokenizer.from_pretrained("llava-hf/llava-1.5-7b-hf") | |
# Define a function to generate a response given an input text and an optional image URL | |
def generate_response(text, image_url=None): | |
# Encode the input text and image URL as a single input_ids tensor | |
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Roadrunner_Petrochelidon_pyrrhonota.jpg/1200px-Roadrunner_Petrochelidon_pyrrhonota.jpg" | |
if image_url: | |
input_ids = tokenizer(f"{text} <img>{image_url}</img>", return_tensors="pt").input_ids | |
else: | |
input_ids = tokenizer(text, return_tensors="pt").input_ids | |
# Generate a response using beam search with a length penalty of 0.8 | |
output_ids = model.generate(input_ids, max_length=256, num_beams=5, length_penalty=0.8) | |
# Decode the output_ids tensor into a string | |
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) | |
# Return the output text | |
return output_text | |
# Use the HuggingFaceTGIGenerator class to automatically map inputs and outputs to Gradio components | |
gr.Interface(generate_response, gr.HuggingFaceTGIGenerator(model), "text").launch() | |