sst1 commited on
Commit
e1e1d82
1 Parent(s): 33f04e3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +117 -0
app.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pymed import PubMed
2
+ from typing import List
3
+ from haystack import component
4
+ from haystack import Document
5
+ from haystack.components.generators import HuggingFaceTGIGenerator
6
+ from dotenv import load_dotenv
7
+ import os
8
+ from haystack import Pipeline
9
+ from haystack.components.builders.prompt_builder import PromptBuilder
10
+ import gradio as gr
11
+ import time
12
+
13
+ # load_dotenv()
14
+
15
+ # os.environ['HUGGINGFACE_API_KEY'] = os.getenv('HUGGINGFACE_API_KEY')
16
+
17
+
18
+ pubmed = PubMed(tool="Haystack2.0Prototype", email="[email protected]")
19
+
20
+ def documentize(article):
21
+ return Document(content=article.abstract, meta={'title': article.title, 'keywords': article.keywords})
22
+
23
+ @component
24
+ class PubMedFetcher():
25
+
26
+ @component.output_types(articles=List[Document])
27
+ def run(self, queries: list[str]):
28
+ cleaned_queries = queries[0].strip().split('\n')
29
+
30
+ articles = []
31
+ try:
32
+ for query in cleaned_queries:
33
+ response = pubmed.query(query, max_results = 1)
34
+ documents = [documentize(article) for article in response]
35
+ articles.extend(documents)
36
+ except Exception as e:
37
+ print(e)
38
+ print(f"Couldn't fetch articles for queries: {queries}" )
39
+ results = {'articles': articles}
40
+ return results
41
+
42
+ keyword_llm = HuggingFaceTGIGenerator("liuhaotian/llava-v1.6-mistral-7b")
43
+ keyword_llm.warm_up()
44
+
45
+ llm = HuggingFaceTGIGenerator("liuhaotian/llava-v1.6-mistral-7b")
46
+ llm.warm_up()
47
+
48
+
49
+ keyword_prompt_template = """
50
+ Your task is to convert the following question into 3 keywords that can be used to find relevant medical research papers on PubMed.
51
+ Here is an examples:
52
+ question: "What are the latest treatments for major depressive disorder?"
53
+ keywords:
54
+ Antidepressive Agents
55
+ Depressive Disorder, Major
56
+ Treatment-Resistant depression
57
+ ---
58
+ question: {{ question }}
59
+ keywords:
60
+ """
61
+
62
+ prompt_template = """
63
+ Answer the question truthfully based on the given documents.
64
+ If the documents don't contain an answer, use your existing knowledge base.
65
+ q: {{ question }}
66
+ Articles:
67
+ {% for article in articles %}
68
+ {{article.content}}
69
+ keywords: {{article.meta['keywords']}}
70
+ title: {{article.meta['title']}}
71
+ {% endfor %}
72
+ """
73
+
74
+ keyword_prompt_builder = PromptBuilder(template=keyword_prompt_template)
75
+
76
+ prompt_builder = PromptBuilder(template=prompt_template)
77
+ fetcher = PubMedFetcher()
78
+
79
+ pipe = Pipeline()
80
+
81
+ pipe.add_component("keyword_prompt_builder", keyword_prompt_builder)
82
+ pipe.add_component("keyword_llm", keyword_llm)
83
+ pipe.add_component("pubmed_fetcher", fetcher)
84
+ pipe.add_component("prompt_builder", prompt_builder)
85
+ pipe.add_component("llm", llm)
86
+
87
+ pipe.connect("keyword_prompt_builder.prompt", "keyword_llm.prompt")
88
+ pipe.connect("keyword_llm.replies", "pubmed_fetcher.queries")
89
+
90
+ pipe.connect("pubmed_fetcher.articles", "prompt_builder.articles")
91
+ pipe.connect("prompt_builder.prompt", "llm.prompt")
92
+
93
+ def ask(question):
94
+ output = pipe.run(data={"keyword_prompt_builder":{"question":question},
95
+ "prompt_builder":{"question": question},
96
+ "llm":{"generation_kwargs": {"max_new_tokens": 500}}})
97
+ print(question)
98
+ print(output['llm']['replies'][0])
99
+ return output['llm']['replies'][0]
100
+
101
+ # result = ask("How are mRNA vaccines being used for cancer treatment?")
102
+
103
+ # print(result)
104
+
105
+ iface = gr.Interface(fn=ask, inputs=gr.Textbox(
106
+ value="How are mRNA vaccines being used for cancer treatment?"),
107
+ outputs="markdown",
108
+ title="LLM Augmented Q&A over PubMed Search Engine",
109
+ description="Ask a question about BioMedical and get an answer from a friendly AI assistant.",
110
+ examples=[["How are mRNA vaccines being used for cancer treatment?"],
111
+ ["Suggest me some Case Studies related to Pneumonia."],
112
+ ["Tell me about HIV AIDS."],["Suggest some case studies related to Auto Immune Disorders."],
113
+ ["How to treat a COVID infected Patient?"]],
114
+ theme=gr.themes.Soft(),
115
+ allow_flagging="never",)
116
+
117
+ iface.launch(debug=True)