import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the quantized model and tokenizer from the Hub model = AutoModelForCausalLM.from_pretrained("llava-hf/llava-1.5-7b-hf") tokenizer = AutoTokenizer.from_pretrained("llava-hf/llava-1.5-7b-hf") # Define a function to generate a response given an input text and an optional image URL def generate_response(text, image_url=None): # Encode the input text and image URL as a single input_ids tensor image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Roadrunner_Petrochelidon_pyrrhonota.jpg/1200px-Roadrunner_Petrochelidon_pyrrhonota.jpg" if image_url: input_ids = tokenizer(f"{text} {image_url}", return_tensors="pt").input_ids else: input_ids = tokenizer(text, return_tensors="pt").input_ids # Generate a response using beam search with a length penalty of 0.8 output_ids = model.generate(input_ids, max_length=256, num_beams=5, length_penalty=0.8) # Decode the output_ids tensor into a string output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True) # Return the output text return output_text # Use the HuggingFaceTGIGenerator class to automatically map inputs and outputs to Gradio components gr.Interface(generate_response, gr.HuggingFaceTGIGenerator(model), "text").launch()