PirateXX commited on
Commit
bcfb3b3
·
1 Parent(s): fd64511

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -5
app.py CHANGED
@@ -1,17 +1,25 @@
1
  from flask import Flask, request
 
 
2
  from transformers import RobertaForSequenceClassification, RobertaTokenizer, RobertaConfig
3
  import torch
 
4
  import gradio as gr
5
  import os
6
  import re
7
  app = Flask(__name__)
8
 
9
  ACCESS_TOKEN = os.environ["ACCESS_TOKEN"]
10
- config = RobertaConfig.from_pretrained("PirateXX/ChatGPT-Text-Detector", use_auth_token= ACCESS_TOKEN)
11
- model = RobertaForSequenceClassification.from_pretrained("PirateXX/ChatGPT-Text-Detector", use_auth_token= ACCESS_TOKEN, config = config)
12
 
13
- model_name = "roberta-base"
14
- tokenizer = RobertaTokenizer.from_pretrained(model_name, map_location=torch.device('cpu'))
 
 
 
 
 
15
 
16
  def text_to_sentences(text):
17
  clean_text = text.replace('\n', ' ')
@@ -34,7 +42,7 @@ def chunks_of_900(text, chunk_size=900):
34
  chunks.append(current_chunk)
35
  return chunks
36
 
37
- def predict(query, device="cpu"):
38
  tokens = tokenizer.encode(query)
39
  all_tokens = len(tokens)
40
  tokens = tokens[:tokenizer.model_max_length - 2]
 
1
  from flask import Flask, request
2
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
+ from transformers import RobertaConfig
4
  from transformers import RobertaForSequenceClassification, RobertaTokenizer, RobertaConfig
5
  import torch
6
+ from torch import cuda
7
  import gradio as gr
8
  import os
9
  import re
10
  app = Flask(__name__)
11
 
12
  ACCESS_TOKEN = os.environ["ACCESS_TOKEN"]
13
+ # config = RobertaConfig.from_pretrained("PirateXX/ChatGPT-Text-Detector", use_auth_token= ACCESS_TOKEN)
14
+ # model = RobertaForSequenceClassification.from_pretrained("PirateXX/ChatGPT-Text-Detector", use_auth_token= ACCESS_TOKEN, config = config)
15
 
16
+ device = 'cuda' if cuda.is_available() else 'cpu'
17
+ tokenizer = AutoTokenizer.from_pretrained("PirateXX/AI-Content-Detector", use_auth_token= "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")
18
+ model = AutoModelForSequenceClassification.from_pretrained("PirateXX/AI-Content-Detector", use_auth_token= "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")
19
+ model.to(device)
20
+
21
+ # model_name = "roberta-base"
22
+ # tokenizer = RobertaTokenizer.from_pretrained(model_name, map_location=torch.device('cpu'))
23
 
24
  def text_to_sentences(text):
25
  clean_text = text.replace('\n', ' ')
 
42
  chunks.append(current_chunk)
43
  return chunks
44
 
45
+ def predict(query):
46
  tokens = tokenizer.encode(query)
47
  all_tokens = len(tokens)
48
  tokens = tokens[:tokenizer.model_max_length - 2]