File size: 1,092 Bytes
fd52b7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from huggingface_hub import hf_hub_download
import torch
from torchvision.transforms.functional import to_tensor

class VaePipeline:
    def __init__(self):
        self.encoder = None
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'

    @classmethod
    def from_pretrained(cls, model_path_hf: str = None, filename_hf: str = "weights.pt", local_model_path: str = None):
        vae = cls()
        if model_path_hf is not None and filename_hf is not None:
            vae.encoder = torch.load(hf_hub_download(model_path_hf, filename_hf), map_location='cpu')
            vae.encoder.to(vae.device)
            vae.encoder.eval()
        elif local_model_path is not None:
            vae.encoder = torch.load(local_model_path, map_location='cpu')
            vae.encoder.to(vae.device)
            vae.encoder.eval()
        return vae
    
    def __call__(self, image) -> torch.Tensor:
        image = image.convert("RGB")
        img_tensor = to_tensor(image.resize((118, 118)))
        return self.encoder(img_tensor.unsqueeze(0).to(self.device))[0][0].detach().cpu()