Spaces:
Runtime error
Runtime error
File size: 8,316 Bytes
479c88d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
from PIL import Image, ImageDraw
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from constants import *
def visualize_bbox(image: Image, prediction):
img = image.copy()
draw = ImageDraw.Draw(img)
for i, box in enumerate(prediction):
x1, y1, x2, y2 = box.cpu()
draw = ImageDraw.Draw(img)
text_w, text_h = draw.textsize(str(i + 1))
label_y = y1 if y1 <= text_h else y1 - text_h
draw.rectangle((x1, y1, x2, y2), outline='red')
draw.rectangle((x1, label_y, x1+text_w, label_y+text_h), outline='red', fill='red')
draw.text((x1, label_y), str(i + 1), fill='white')
return img
def xywh2xyxy(x):
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0]
y[..., 1] = x[..., 1]
y[..., 2] = x[..., 0] + x[..., 2]
y[..., 3] = x[..., 1] + x[..., 3]
return y
def output_tensor_to_boxes(boxes_tensor):
"""
Converts the YOLO output tensor to list of boxes with probabilites.
Arguments:
boxes_tensor -- tensor of shape (S, S, BOX, 5)
Returns:
boxes -- list of shape (None, 5)
Note: "None" is here because you don't know the exact number of selected boxes, as it depends on the threshold.
For example, the actual output size of scores would be (10, 5) if there are 10 boxes
"""
cell_w, cell_h = W/S, H/S
boxes = []
for i in range(S):
for j in range(S):
for b in range(BOX):
anchor_wh = torch.tensor(ANCHORS[b])
data = boxes_tensor[i,j,b]
xy = torch.sigmoid(data[:2])
wh = torch.exp(data[2:4])*anchor_wh
obj_prob = torch.sigmoid(data[4])
if obj_prob > OUTPUT_THRESH:
x_center, y_center, w, h = xy[0], xy[1], wh[0], wh[1]
x, y = x_center+j-w/2, y_center+i-h/2
x,y,w,h = x*cell_w, y*cell_h, w*cell_w, h*cell_h
box = [x,y,w,h, obj_prob]
boxes.append(box)
return boxes
def overlap(interval_1, interval_2):
"""
Calculates length of overlap between two intervals.
Arguments:
interval_1 -- list or tuple of shape (2,) containing endpoints of the first interval
interval_2 -- list or tuple of shape (2, 2) containing endpoints of the second interval
Returns:
overlap -- length of overlap
"""
x1, x2 = interval_1
x3, x4 = interval_2
if x3 < x1:
if x4 < x1:
return 0
else:
return min(x2,x4) - x1
else:
if x2 < x3:
return 0
else:
return min(x2,x4) - x3
def compute_iou(box1, box2):
"""
Compute IOU between box1 and box2.
Argmunets:
box1 -- list of shape (5, ). Represents the first box
box2 -- list of shape (5, ). Represents the second box
Each box is [x, y, w, h, prob]
Returns:
iou -- intersection over union score between two boxes
"""
x1,y1,w1,h1 = box1[0], box1[1], box1[2], box1[3]
x2,y2,w2,h2 = box2[0], box2[1], box2[2], box2[3]
area1, area2 = w1*h1, w2*h2
intersect_w = overlap((x1,x1+w1), (x2,x2+w2))
intersect_h = overlap((y1,y1+h1), (y2,y2+w2))
if intersect_w == w1 and intersect_h == h1 or intersect_w == w2 and intersect_h == h2:
return 1.
intersect_area = intersect_w*intersect_h
iou = intersect_area/(area1 + area2 - intersect_area)
return iou
def nonmax_suppression(boxes, iou_thresh = IOU_THRESH):
"""
Removes ovelap bboxes
Arguments:
boxes -- list of shape (None, 5)
iou_thresh -- maximal value of iou when boxes are considered different
Each box is [x, y, w, h, prob]
Returns:
boxes -- list of shape (None, 5) with removed overlapping boxes
"""
boxes = sorted(boxes, key=lambda x: x[4], reverse=True)
for i, current_box in enumerate(boxes):
if current_box[4] <= 0:
continue
for j in range(i+1, len(boxes)):
iou = compute_iou(current_box, boxes[j])
if iou > iou_thresh:
boxes[j][4] = 0
boxes = [box for box in boxes if box[4] > 0]
return boxes
def heatmap(data, row_labels, col_labels, ax=None,
cbar_kw=None, cbarlabel="", **kwargs):
"""
Create a heatmap from a numpy array and two lists of labels.
Parameters
----------
data
A 2D numpy array of shape (M, N).
row_labels
A list or array of length M with the labels for the rows.
col_labels
A list or array of length N with the labels for the columns.
ax
A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If
not provided, use current axes or create a new one. Optional.
cbar_kw
A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional.
cbarlabel
The label for the colorbar. Optional.
**kwargs
All other arguments are forwarded to `imshow`.
"""
if ax is None:
ax = plt.gca()
if cbar_kw is None:
cbar_kw = {}
# Plot the heatmap
im = ax.imshow(data, **kwargs)
# Create colorbar
cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)
cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom")
# Show all ticks and label them with the respective list entries.
ax.set_xticks(np.arange(data.shape[1]), labels=col_labels)
ax.set_yticks(np.arange(data.shape[0]), labels=row_labels)
# Let the horizontal axes labeling appear on top.
ax.tick_params(top=True, bottom=False,
labeltop=True, labelbottom=False)
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=-30, ha="right",
rotation_mode="anchor")
# Turn spines off and create white grid.
ax.spines[:].set_visible(False)
ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True)
ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True)
ax.grid(which="minor", color="w", linestyle='-', linewidth=3)
ax.tick_params(which="minor", bottom=False, left=False)
return im, cbar
def annotate_heatmap(im, data=None, valfmt="{x:.2f}",
textcolors=("black", "white"),
threshold=None, **textkw):
"""
A function to annotate a heatmap.
Parameters
----------
im
The AxesImage to be labeled.
data
Data used to annotate. If None, the image's data is used. Optional.
valfmt
The format of the annotations inside the heatmap. This should either
use the string format method, e.g. "$ {x:.2f}", or be a
`matplotlib.ticker.Formatter`. Optional.
textcolors
A pair of colors. The first is used for values below a threshold,
the second for those above. Optional.
threshold
Value in data units according to which the colors from textcolors are
applied. If None (the default) uses the middle of the colormap as
separation. Optional.
**kwargs
All other arguments are forwarded to each call to `text` used to create
the text labels.
"""
if not isinstance(data, (list, np.ndarray)):
data = im.get_array()
# Normalize the threshold to the images color range.
if threshold is not None:
threshold = im.norm(threshold)
else:
threshold = im.norm(data.max())/2.
# Set default alignment to center, but allow it to be
# overwritten by textkw.
kw = dict(horizontalalignment="center",
verticalalignment="center")
kw.update(textkw)
# Get the formatter in case a string is supplied
if isinstance(valfmt, str):
valfmt = matplotlib.ticker.StrMethodFormatter(valfmt)
# Loop over the data and create a `Text` for each "pixel".
# Change the text's color depending on the data.
texts = []
for i in range(data.shape[0]):
for j in range(data.shape[1]):
kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)])
text = im.axes.text(j, i, valfmt(data[i, j], None), **kw)
texts.append(text)
return texts |