Spaces:
Runtime error
Runtime error
File size: 8,115 Bytes
fd52b7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import torch
import pandas as pd
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
from .constants import *
def output_tensor_to_boxes(boxes_tensor):
"""
Converts the YOLO output tensor to list of boxes with probabilites.
Arguments:
boxes_tensor -- tensor of shape (S, S, BOX, 5)
Returns:
boxes -- list of shape (None, 5)
Note: "None" is here because you don't know the exact number of selected boxes, as it depends on the threshold.
For example, the actual output size of scores would be (10, 5) if there are 10 boxes
"""
cell_w, cell_h = W/S, H/S
boxes = []
for i in range(S):
for j in range(S):
for b in range(BOX):
anchor_wh = torch.tensor(ANCHORS[b])
data = boxes_tensor[i,j,b]
xy = torch.sigmoid(data[:2])
wh = torch.exp(data[2:4])*anchor_wh
obj_prob = torch.sigmoid(data[4])
if obj_prob > OUTPUT_THRESH:
x_center, y_center, w, h = xy[0], xy[1], wh[0], wh[1]
x, y = x_center+j-w/2, y_center+i-h/2
x,y,w,h = x*cell_w, y*cell_h, w*cell_w, h*cell_h
box = [x,y,w,h, obj_prob]
boxes.append(box)
return boxes
def plot_img(img, size=(7,7)):
plt.figure(figsize=size)
plt.imshow(img)
plt.show()
def plot_normalized_img(img, std=STD, mean=MEAN, size=(7,7)):
mean = mean if isinstance(mean, np.ndarray) else np.array(mean)
std = std if isinstance(std, np.ndarray) else np.array(std)
plt.figure(figsize=size)
plt.imshow((255. * (img * std + mean)).astype(np.uint))
plt.show()
def read_data(annotations=Path(ANNOTATIONS_PATH)):
"""
Reads annotations data from .csv file. Must contain columns: image_name, bbox_x, bbox_y, bbox_width, bbox_height.
Arguments:
annotations_path -- string or Path specifying path of annotations file
Returns:
data -- list of dictionaries containing path, number of boxes and boxes itself
"""
data = []
boxes = pd.read_csv(annotations)
image_names = boxes['image_name'].unique()
for image_name in image_names:
cur_boxes = boxes[boxes['image_name'] == image_name]
img_data = {
'file_path': image_name,
'box_nb': len(cur_boxes),
'boxes': []}
stamp_nb = img_data['box_nb']
if stamp_nb <= STAMP_NB_MAX:
img_data['boxes'] = cur_boxes[['bbox_x', 'bbox_y','bbox_width','bbox_height']].values
data.append(img_data)
return data
def xywh2xyxy(x):
"""
Converts xywh format to xyxy
Arguments:
x -- torch.Tensor or np.array (xywh format)
Returns:
y -- torch.Tensor or np.array (xyxy)
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0]
y[..., 1] = x[..., 1]
y[..., 2] = x[..., 0] + x[..., 2]
y[..., 3] = x[..., 1] + x[..., 3]
return y
def boxes_to_tensor(boxes):
"""
Convert list of boxes (and labels) to tensor format
Arguments:
boxes -- list of boxes
Returns:
boxes_tensor -- tensor of shape (S, S, BOX, 5)
"""
boxes_tensor = torch.zeros((S, S, BOX, 5))
cell_w, cell_h = W/S, H/S
for i, box in enumerate(boxes):
x, y, w, h = box
# normalize xywh with cell_size
x, y, w, h = x / cell_w, y / cell_h, w / cell_w, h / cell_h
center_x, center_y = x + w / 2, y + h / 2
grid_x = int(np.floor(center_x))
grid_y = int(np.floor(center_y))
if grid_x < S and grid_y < S:
boxes_tensor[grid_y, grid_x, :, 0:4] = torch.tensor(BOX * [[center_x - grid_x, center_y - grid_y, w, h]])
boxes_tensor[grid_y, grid_x, :, 4] = torch.tensor(BOX * [1.])
return boxes_tensor
def target_tensor_to_boxes(boxes_tensor, output_threshold=OUTPUT_THRESH):
"""
Recover target tensor (tensor output of dataset) to bboxes.
Arguments:
boxes_tensor -- tensor of shape (S, S, BOX, 5)
Returns:
boxes -- list of boxes, each box is [x, y, w, h]
"""
cell_w, cell_h = W/S, H/S
boxes = []
for i in range(S):
for j in range(S):
for b in range(BOX):
data = boxes_tensor[i,j,b]
x_center,y_center, w, h, obj_prob = data[0], data[1], data[2], data[3], data[4]
if obj_prob > output_threshold:
x, y = x_center+j-w/2, y_center+i-h/2
x,y,w,h = x*cell_w, y*cell_h, w*cell_w, h*cell_h
box = [x,y,w,h]
boxes.append(box)
return boxes
def overlap(interval_1, interval_2):
"""
Calculates length of overlap between two intervals.
Arguments:
interval_1 -- list or tuple of shape (2,) containing endpoints of the first interval
interval_2 -- list or tuple of shape (2, 2) containing endpoints of the second interval
Returns:
overlap -- length of overlap
"""
x1, x2 = interval_1
x3, x4 = interval_2
if x3 < x1:
if x4 < x1:
return 0
else:
return min(x2,x4) - x1
else:
if x2 < x3:
return 0
else:
return min(x2,x4) - x3
def compute_iou(box1, box2):
"""
Compute IOU between box1 and box2.
Argmunets:
box1 -- list of shape (5, ). Represents the first box
box2 -- list of shape (5, ). Represents the second box
Each box is [x, y, w, h, prob]
Returns:
iou -- intersection over union score between two boxes
"""
x1,y1,w1,h1 = box1[0], box1[1], box1[2], box1[3]
x2,y2,w2,h2 = box2[0], box2[1], box2[2], box2[3]
area1, area2 = w1*h1, w2*h2
intersect_w = overlap((x1,x1+w1), (x2,x2+w2))
intersect_h = overlap((y1,y1+h1), (y2,y2+w2))
if intersect_w == w1 and intersect_h == h1 or intersect_w == w2 and intersect_h == h2:
return 1.
intersect_area = intersect_w*intersect_h
iou = intersect_area/(area1 + area2 - intersect_area)
return iou
def nonmax_suppression(boxes, iou_thresh = IOU_THRESH):
"""
Removes ovelap bboxes
Arguments:
boxes -- list of shape (None, 5)
iou_thresh -- maximal value of iou when boxes are considered different
Each box is [x, y, w, h, prob]
Returns:
boxes -- list of shape (None, 5) with removed overlapping boxes
"""
boxes = sorted(boxes, key=lambda x: x[4], reverse=True)
for i, current_box in enumerate(boxes):
if current_box[4] <= 0:
continue
for j in range(i+1, len(boxes)):
iou = compute_iou(current_box, boxes[j])
if iou > iou_thresh:
boxes[j][4] = 0
boxes = [box for box in boxes if box[4] > 0]
return boxes
def yolo_head(yolo_output):
"""
Converts a yolo output tensor to separate tensors of coordinates, shapes and probabilities.
Arguments:
yolo_output -- tensor of shape (batch_size, S, S, BOX, 5)
Returns:
xy -- tensor of shape (batch_size, S, S, BOX, 2) containing coordinates of centers of found boxes for each anchor in each grid cell
wh -- tensor of shape (batch_size, S, S, BOX, 2) containing width and height of found boxes for each anchor in each grid cell
prob -- tensor of shape (batch_size, S, S, BOX, 1) containing the probability of presence of boxes for each anchor in each grid cell
"""
xy = torch.sigmoid(yolo_output[..., 0:2])
anchors_wh = torch.tensor(ANCHORS, device=yolo_output.device).view(1, 1, 1, len(ANCHORS), 2)
wh = torch.exp(yolo_output[..., 2:4]) * anchors_wh
prob = torch.sigmoid(yolo_output[..., 4:5])
return xy, wh, prob
def process_target(target):
xy = target[..., 0:2]
wh = target[..., 2:4]
prob = target[..., 4:5]
return xy, wh, prob |