File size: 3,175 Bytes
fd52b7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "HOME = os.getcwd()\n",
    "print(HOME)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Pip install method (recommended)\n",
    "\n",
    "%pip install ultralytics==8.0.20\n",
    "\n",
    "from IPython import display\n",
    "display.clear_output()\n",
    "\n",
    "import ultralytics\n",
    "ultralytics.checks()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from ultralytics import YOLO\n",
    "\n",
    "from IPython.display import display, Image"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "!mkdir {HOME}/datasets\n",
    "%cd {HOME}/datasets\n",
    "\n",
    "%pip install roboflow --quiet\n",
    "\n",
    "from roboflow import Roboflow\n",
    "rf = Roboflow(api_key=\"YOUR_API_KEY\")\n",
    "project = rf.workspace(\"WORKSPACE\").project(\"PROJECT\")\n",
    "dataset = project.version(1).download(\"yolov8\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%cd {HOME}\n",
    "\n",
    "!yolo task=detect mode=train model=yolov8s.pt data={dataset.location}/data.yaml epochs=25 imgsz=800 plots=True"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%cd {HOME}\n",
    "Image(filename=f'{HOME}/runs/detect/train/confusion_matrix.png', width=600)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%cd {HOME}\n",
    "Image(filename=f'{HOME}/runs/detect/train/results.png', width=600)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%cd {HOME}\n",
    "Image(filename=f'{HOME}/runs/detect/train/val_batch0_pred.jpg', width=600)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%cd {HOME}\n",
    "\n",
    "!yolo task=detect mode=val model={HOME}/runs/detect/train/weights/best.pt data={dataset.location}/data.yaml"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "%cd {HOME}\n",
    "!yolo task=detect mode=predict model={HOME}/runs/detect/train/weights/best.pt conf=0.25 source={dataset.location}/test/images save=True"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import glob\n",
    "from IPython.display import Image, display\n",
    "\n",
    "for image_path in glob.glob(f'{HOME}/runs/detect/predict3/*.jpg')[:3]:\n",
    "      display(Image(filename=image_path, width=600))\n",
    "      print(\"\\n\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "name": "python"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}