sadjava's picture
Update README.md
b2a333c
raw
history blame
8.12 kB
import torch
import pandas as pd
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
from .constants import *
def output_tensor_to_boxes(boxes_tensor):
"""
Converts the YOLO output tensor to list of boxes with probabilites.
Arguments:
boxes_tensor -- tensor of shape (S, S, BOX, 5)
Returns:
boxes -- list of shape (None, 5)
Note: "None" is here because you don't know the exact number of selected boxes, as it depends on the threshold.
For example, the actual output size of scores would be (10, 5) if there are 10 boxes
"""
cell_w, cell_h = W/S, H/S
boxes = []
for i in range(S):
for j in range(S):
for b in range(BOX):
anchor_wh = torch.tensor(ANCHORS[b])
data = boxes_tensor[i,j,b]
xy = torch.sigmoid(data[:2])
wh = torch.exp(data[2:4])*anchor_wh
obj_prob = torch.sigmoid(data[4])
if obj_prob > OUTPUT_THRESH:
x_center, y_center, w, h = xy[0], xy[1], wh[0], wh[1]
x, y = x_center+j-w/2, y_center+i-h/2
x,y,w,h = x*cell_w, y*cell_h, w*cell_w, h*cell_h
box = [x,y,w,h, obj_prob]
boxes.append(box)
return boxes
def plot_img(img, size=(7,7)):
plt.figure(figsize=size)
plt.imshow(img)
plt.show()
def plot_normalized_img(img, std=STD, mean=MEAN, size=(7,7)):
mean = mean if isinstance(mean, np.ndarray) else np.array(mean)
std = std if isinstance(std, np.ndarray) else np.array(std)
plt.figure(figsize=size)
plt.imshow((255. * (img * std + mean)).astype(np.uint))
plt.show()
def read_data(annotations=Path(ANNOTATIONS_PATH)):
"""
Reads annotations data from .csv file. Must contain columns: image_name, bbox_x, bbox_y, bbox_width, bbox_height.
Arguments:
annotations_path -- string or Path specifying path of annotations file
Returns:
data -- list of dictionaries containing path, number of boxes and boxes itself
"""
data = []
boxes = pd.read_csv(annotations)
image_names = boxes['image_name'].unique()
for image_name in image_names:
cur_boxes = boxes[boxes['image_name'] == image_name]
img_data = {
'file_path': image_name,
'box_nb': len(cur_boxes),
'boxes': []}
stamp_nb = img_data['box_nb']
if stamp_nb <= STAMP_NB_MAX:
img_data['boxes'] = cur_boxes[['bbox_x', 'bbox_y','bbox_width','bbox_height']].values
data.append(img_data)
return data
def xywh2xyxy(x):
"""
Converts xywh format to xyxy
Arguments:
x -- torch.Tensor or np.array (xywh format)
Returns:
y -- torch.Tensor or np.array (xyxy)
"""
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[..., 0] = x[..., 0]
y[..., 1] = x[..., 1]
y[..., 2] = x[..., 0] + x[..., 2]
y[..., 3] = x[..., 1] + x[..., 3]
return y
def boxes_to_tensor(boxes):
"""
Convert list of boxes (and labels) to tensor format
Arguments:
boxes -- list of boxes
Returns:
boxes_tensor -- tensor of shape (S, S, BOX, 5)
"""
boxes_tensor = torch.zeros((S, S, BOX, 5))
cell_w, cell_h = W/S, H/S
for i, box in enumerate(boxes):
x, y, w, h = box
# normalize xywh with cell_size
x, y, w, h = x / cell_w, y / cell_h, w / cell_w, h / cell_h
center_x, center_y = x + w / 2, y + h / 2
grid_x = int(np.floor(center_x))
grid_y = int(np.floor(center_y))
if grid_x < S and grid_y < S:
boxes_tensor[grid_y, grid_x, :, 0:4] = torch.tensor(BOX * [[center_x - grid_x, center_y - grid_y, w, h]])
boxes_tensor[grid_y, grid_x, :, 4] = torch.tensor(BOX * [1.])
return boxes_tensor
def target_tensor_to_boxes(boxes_tensor, output_threshold=OUTPUT_THRESH):
"""
Recover target tensor (tensor output of dataset) to bboxes.
Arguments:
boxes_tensor -- tensor of shape (S, S, BOX, 5)
Returns:
boxes -- list of boxes, each box is [x, y, w, h]
"""
cell_w, cell_h = W/S, H/S
boxes = []
for i in range(S):
for j in range(S):
for b in range(BOX):
data = boxes_tensor[i,j,b]
x_center,y_center, w, h, obj_prob = data[0], data[1], data[2], data[3], data[4]
if obj_prob > output_threshold:
x, y = x_center+j-w/2, y_center+i-h/2
x,y,w,h = x*cell_w, y*cell_h, w*cell_w, h*cell_h
box = [x,y,w,h]
boxes.append(box)
return boxes
def overlap(interval_1, interval_2):
"""
Calculates length of overlap between two intervals.
Arguments:
interval_1 -- list or tuple of shape (2,) containing endpoints of the first interval
interval_2 -- list or tuple of shape (2, 2) containing endpoints of the second interval
Returns:
overlap -- length of overlap
"""
x1, x2 = interval_1
x3, x4 = interval_2
if x3 < x1:
if x4 < x1:
return 0
else:
return min(x2,x4) - x1
else:
if x2 < x3:
return 0
else:
return min(x2,x4) - x3
def compute_iou(box1, box2):
"""
Compute IOU between box1 and box2.
Argmunets:
box1 -- list of shape (5, ). Represents the first box
box2 -- list of shape (5, ). Represents the second box
Each box is [x, y, w, h, prob]
Returns:
iou -- intersection over union score between two boxes
"""
x1,y1,w1,h1 = box1[0], box1[1], box1[2], box1[3]
x2,y2,w2,h2 = box2[0], box2[1], box2[2], box2[3]
area1, area2 = w1*h1, w2*h2
intersect_w = overlap((x1,x1+w1), (x2,x2+w2))
intersect_h = overlap((y1,y1+h1), (y2,y2+w2))
if intersect_w == w1 and intersect_h == h1 or intersect_w == w2 and intersect_h == h2:
return 1.
intersect_area = intersect_w*intersect_h
iou = intersect_area/(area1 + area2 - intersect_area)
return iou
def nonmax_suppression(boxes, iou_thresh = IOU_THRESH):
"""
Removes ovelap bboxes
Arguments:
boxes -- list of shape (None, 5)
iou_thresh -- maximal value of iou when boxes are considered different
Each box is [x, y, w, h, prob]
Returns:
boxes -- list of shape (None, 5) with removed overlapping boxes
"""
boxes = sorted(boxes, key=lambda x: x[4], reverse=True)
for i, current_box in enumerate(boxes):
if current_box[4] <= 0:
continue
for j in range(i+1, len(boxes)):
iou = compute_iou(current_box, boxes[j])
if iou > iou_thresh:
boxes[j][4] = 0
boxes = [box for box in boxes if box[4] > 0]
return boxes
def yolo_head(yolo_output):
"""
Converts a yolo output tensor to separate tensors of coordinates, shapes and probabilities.
Arguments:
yolo_output -- tensor of shape (batch_size, S, S, BOX, 5)
Returns:
xy -- tensor of shape (batch_size, S, S, BOX, 2) containing coordinates of centers of found boxes for each anchor in each grid cell
wh -- tensor of shape (batch_size, S, S, BOX, 2) containing width and height of found boxes for each anchor in each grid cell
prob -- tensor of shape (batch_size, S, S, BOX, 1) containing the probability of presence of boxes for each anchor in each grid cell
"""
xy = torch.sigmoid(yolo_output[..., 0:2])
anchors_wh = torch.tensor(ANCHORS, device=yolo_output.device).view(1, 1, 1, len(ANCHORS), 2)
wh = torch.exp(yolo_output[..., 2:4]) * anchors_wh
prob = torch.sigmoid(yolo_output[..., 4:5])
return xy, wh, prob
def process_target(target):
xy = target[..., 0:2]
wh = target[..., 2:4]
prob = target[..., 4:5]
return xy, wh, prob