from PIL import Image, ImageDraw import torch import numpy as np import matplotlib.pyplot as plt import matplotlib from constants import * def visualize_bbox(image: Image, prediction): img = image.copy() draw = ImageDraw.Draw(img) for i, box in enumerate(prediction): x1, y1, x2, y2 = box.cpu() draw = ImageDraw.Draw(img) text_w, text_h = draw.textsize(str(i + 1)) label_y = y1 if y1 <= text_h else y1 - text_h draw.rectangle((x1, y1, x2, y2), outline='red') draw.rectangle((x1, label_y, x1+text_w, label_y+text_h), outline='red', fill='red') draw.text((x1, label_y), str(i + 1), fill='white') return img def xywh2xyxy(x): y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[..., 0] = x[..., 0] y[..., 1] = x[..., 1] y[..., 2] = x[..., 0] + x[..., 2] y[..., 3] = x[..., 1] + x[..., 3] return y def output_tensor_to_boxes(boxes_tensor): """ Converts the YOLO output tensor to list of boxes with probabilites. Arguments: boxes_tensor -- tensor of shape (S, S, BOX, 5) Returns: boxes -- list of shape (None, 5) Note: "None" is here because you don't know the exact number of selected boxes, as it depends on the threshold. For example, the actual output size of scores would be (10, 5) if there are 10 boxes """ cell_w, cell_h = W/S, H/S boxes = [] for i in range(S): for j in range(S): for b in range(BOX): anchor_wh = torch.tensor(ANCHORS[b]) data = boxes_tensor[i,j,b] xy = torch.sigmoid(data[:2]) wh = torch.exp(data[2:4])*anchor_wh obj_prob = torch.sigmoid(data[4]) if obj_prob > OUTPUT_THRESH: x_center, y_center, w, h = xy[0], xy[1], wh[0], wh[1] x, y = x_center+j-w/2, y_center+i-h/2 x,y,w,h = x*cell_w, y*cell_h, w*cell_w, h*cell_h box = [x,y,w,h, obj_prob] boxes.append(box) return boxes def overlap(interval_1, interval_2): """ Calculates length of overlap between two intervals. Arguments: interval_1 -- list or tuple of shape (2,) containing endpoints of the first interval interval_2 -- list or tuple of shape (2, 2) containing endpoints of the second interval Returns: overlap -- length of overlap """ x1, x2 = interval_1 x3, x4 = interval_2 if x3 < x1: if x4 < x1: return 0 else: return min(x2,x4) - x1 else: if x2 < x3: return 0 else: return min(x2,x4) - x3 def compute_iou(box1, box2): """ Compute IOU between box1 and box2. Argmunets: box1 -- list of shape (5, ). Represents the first box box2 -- list of shape (5, ). Represents the second box Each box is [x, y, w, h, prob] Returns: iou -- intersection over union score between two boxes """ x1,y1,w1,h1 = box1[0], box1[1], box1[2], box1[3] x2,y2,w2,h2 = box2[0], box2[1], box2[2], box2[3] area1, area2 = w1*h1, w2*h2 intersect_w = overlap((x1,x1+w1), (x2,x2+w2)) intersect_h = overlap((y1,y1+h1), (y2,y2+w2)) if intersect_w == w1 and intersect_h == h1 or intersect_w == w2 and intersect_h == h2: return 1. intersect_area = intersect_w*intersect_h iou = intersect_area/(area1 + area2 - intersect_area) return iou def nonmax_suppression(boxes, iou_thresh = IOU_THRESH): """ Removes ovelap bboxes Arguments: boxes -- list of shape (None, 5) iou_thresh -- maximal value of iou when boxes are considered different Each box is [x, y, w, h, prob] Returns: boxes -- list of shape (None, 5) with removed overlapping boxes """ boxes = sorted(boxes, key=lambda x: x[4], reverse=True) for i, current_box in enumerate(boxes): if current_box[4] <= 0: continue for j in range(i+1, len(boxes)): iou = compute_iou(current_box, boxes[j]) if iou > iou_thresh: boxes[j][4] = 0 boxes = [box for box in boxes if box[4] > 0] return boxes def heatmap(data, row_labels, col_labels, ax=None, cbar_kw=None, cbarlabel="", **kwargs): """ Create a heatmap from a numpy array and two lists of labels. Parameters ---------- data A 2D numpy array of shape (M, N). row_labels A list or array of length M with the labels for the rows. col_labels A list or array of length N with the labels for the columns. ax A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If not provided, use current axes or create a new one. Optional. cbar_kw A dictionary with arguments to `matplotlib.Figure.colorbar`. Optional. cbarlabel The label for the colorbar. Optional. **kwargs All other arguments are forwarded to `imshow`. """ if ax is None: ax = plt.gca() if cbar_kw is None: cbar_kw = {} # Plot the heatmap im = ax.imshow(data, **kwargs) # Create colorbar cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw) cbar.ax.set_ylabel(cbarlabel, rotation=-90, va="bottom") # Show all ticks and label them with the respective list entries. ax.set_xticks(np.arange(data.shape[1]), labels=col_labels) ax.set_yticks(np.arange(data.shape[0]), labels=row_labels) # Let the horizontal axes labeling appear on top. ax.tick_params(top=True, bottom=False, labeltop=True, labelbottom=False) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=-30, ha="right", rotation_mode="anchor") # Turn spines off and create white grid. ax.spines[:].set_visible(False) ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True) ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True) ax.grid(which="minor", color="w", linestyle='-', linewidth=3) ax.tick_params(which="minor", bottom=False, left=False) return im, cbar def annotate_heatmap(im, data=None, valfmt="{x:.2f}", textcolors=("black", "white"), threshold=None, **textkw): """ A function to annotate a heatmap. Parameters ---------- im The AxesImage to be labeled. data Data used to annotate. If None, the image's data is used. Optional. valfmt The format of the annotations inside the heatmap. This should either use the string format method, e.g. "$ {x:.2f}", or be a `matplotlib.ticker.Formatter`. Optional. textcolors A pair of colors. The first is used for values below a threshold, the second for those above. Optional. threshold Value in data units according to which the colors from textcolors are applied. If None (the default) uses the middle of the colormap as separation. Optional. **kwargs All other arguments are forwarded to each call to `text` used to create the text labels. """ if not isinstance(data, (list, np.ndarray)): data = im.get_array() # Normalize the threshold to the images color range. if threshold is not None: threshold = im.norm(threshold) else: threshold = im.norm(data.max())/2. # Set default alignment to center, but allow it to be # overwritten by textkw. kw = dict(horizontalalignment="center", verticalalignment="center") kw.update(textkw) # Get the formatter in case a string is supplied if isinstance(valfmt, str): valfmt = matplotlib.ticker.StrMethodFormatter(valfmt) # Loop over the data and create a `Text` for each "pixel". # Change the text's color depending on the data. texts = [] for i in range(data.shape[0]): for j in range(data.shape[1]): kw.update(color=textcolors[int(im.norm(data[i, j]) > threshold)]) text = im.axes.text(j, i, valfmt(data[i, j], None), **kw) texts.append(text) return texts