import torch import cv2 import pandas as pd import numpy as np from pathlib import Path import matplotlib.pyplot as plt from .constants import * def output_tensor_to_boxes(boxes_tensor): """ Converts the YOLO output tensor to list of boxes with probabilites. Arguments: boxes_tensor -- tensor of shape (S, S, BOX, 5) Returns: boxes -- list of shape (None, 5) Note: "None" is here because you don't know the exact number of selected boxes, as it depends on the threshold. For example, the actual output size of scores would be (10, 5) if there are 10 boxes """ cell_w, cell_h = W/S, H/S boxes = [] for i in range(S): for j in range(S): for b in range(BOX): anchor_wh = torch.tensor(ANCHORS[b]) data = boxes_tensor[i,j,b] xy = torch.sigmoid(data[:2]) wh = torch.exp(data[2:4])*anchor_wh obj_prob = torch.sigmoid(data[4]) if obj_prob > OUTPUT_THRESH: x_center, y_center, w, h = xy[0], xy[1], wh[0], wh[1] x, y = x_center+j-w/2, y_center+i-h/2 x,y,w,h = x*cell_w, y*cell_h, w*cell_w, h*cell_h box = [x,y,w,h, obj_prob] boxes.append(box) return boxes def plot_img(img, size=(7,7)): plt.figure(figsize=size) plt.imshow(img) plt.show() def plot_normalized_img(img, std=STD, mean=MEAN, size=(7,7)): mean = mean if isinstance(mean, np.ndarray) else np.array(mean) std = std if isinstance(std, np.ndarray) else np.array(std) plt.figure(figsize=size) plt.imshow((255. * (img * std + mean)).astype(np.uint)) plt.show() def visualize_bbox(img, boxes, thickness=2, color=BOX_COLOR, draw_center=True): """ Draws boxes on the given image. Arguments: img -- torch.Tensor of shape (3, W, H) or numpy.ndarray of shape (W, H, 3) boxes -- list of shape (None, 5) thickness -- number specifying the thickness of box border color -- RGB tuple of shape (3,) specifying the color of boxes draw_center -- boolean specifying whether to draw center or not Returns: img_copy -- numpy.ndarray of shape(W, H, 3) containing image with bouning boxes """ img_copy = img.cpu().permute(1,2,0).numpy() if isinstance(img, torch.Tensor) else img.copy() for box in boxes: x,y,w,h = int(box[0]), int(box[1]), int(box[2]), int(box[3]) img_copy = cv2.rectangle( img_copy, (x,y),(x+w, y+h), color, thickness) if draw_center: center = (x+w//2, y+h//2) img_copy = cv2.circle(img_copy, center=center, radius=3, color=(0,255,0), thickness=2) return img_copy def read_data(annotations=Path(ANNOTATIONS_PATH)): """ Reads annotations data from .csv file. Must contain columns: image_name, bbox_x, bbox_y, bbox_width, bbox_height. Arguments: annotations_path -- string or Path specifying path of annotations file Returns: data -- list of dictionaries containing path, number of boxes and boxes itself """ data = [] boxes = pd.read_csv(annotations) image_names = boxes['image_name'].unique() for image_name in image_names: cur_boxes = boxes[boxes['image_name'] == image_name] img_data = { 'file_path': image_name, 'box_nb': len(cur_boxes), 'boxes': []} stamp_nb = img_data['box_nb'] if stamp_nb <= STAMP_NB_MAX: img_data['boxes'] = cur_boxes[['bbox_x', 'bbox_y','bbox_width','bbox_height']].values data.append(img_data) return data def xywh2xyxy(x): """ Converts xywh format to xyxy Arguments: x -- torch.Tensor or np.array (xywh format) Returns: y -- torch.Tensor or np.array (xyxy) """ y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) y[..., 0] = x[..., 0] y[..., 1] = x[..., 1] y[..., 2] = x[..., 0] + x[..., 2] y[..., 3] = x[..., 1] + x[..., 3] return y def boxes_to_tensor(boxes): """ Convert list of boxes (and labels) to tensor format Arguments: boxes -- list of boxes Returns: boxes_tensor -- tensor of shape (S, S, BOX, 5) """ boxes_tensor = torch.zeros((S, S, BOX, 5)) cell_w, cell_h = W/S, H/S for i, box in enumerate(boxes): x, y, w, h = box # normalize xywh with cell_size x, y, w, h = x / cell_w, y / cell_h, w / cell_w, h / cell_h center_x, center_y = x + w / 2, y + h / 2 grid_x = int(np.floor(center_x)) grid_y = int(np.floor(center_y)) if grid_x < S and grid_y < S: boxes_tensor[grid_y, grid_x, :, 0:4] = torch.tensor(BOX * [[center_x - grid_x, center_y - grid_y, w, h]]) boxes_tensor[grid_y, grid_x, :, 4] = torch.tensor(BOX * [1.]) return boxes_tensor def target_tensor_to_boxes(boxes_tensor, output_threshold=OUTPUT_THRESH): """ Recover target tensor (tensor output of dataset) to bboxes. Arguments: boxes_tensor -- tensor of shape (S, S, BOX, 5) Returns: boxes -- list of boxes, each box is [x, y, w, h] """ cell_w, cell_h = W/S, H/S boxes = [] for i in range(S): for j in range(S): for b in range(BOX): data = boxes_tensor[i,j,b] x_center,y_center, w, h, obj_prob = data[0], data[1], data[2], data[3], data[4] if obj_prob > output_threshold: x, y = x_center+j-w/2, y_center+i-h/2 x,y,w,h = x*cell_w, y*cell_h, w*cell_w, h*cell_h box = [x,y,w,h] boxes.append(box) return boxes def overlap(interval_1, interval_2): """ Calculates length of overlap between two intervals. Arguments: interval_1 -- list or tuple of shape (2,) containing endpoints of the first interval interval_2 -- list or tuple of shape (2, 2) containing endpoints of the second interval Returns: overlap -- length of overlap """ x1, x2 = interval_1 x3, x4 = interval_2 if x3 < x1: if x4 < x1: return 0 else: return min(x2,x4) - x1 else: if x2 < x3: return 0 else: return min(x2,x4) - x3 def compute_iou(box1, box2): """ Compute IOU between box1 and box2. Argmunets: box1 -- list of shape (5, ). Represents the first box box2 -- list of shape (5, ). Represents the second box Each box is [x, y, w, h, prob] Returns: iou -- intersection over union score between two boxes """ x1,y1,w1,h1 = box1[0], box1[1], box1[2], box1[3] x2,y2,w2,h2 = box2[0], box2[1], box2[2], box2[3] area1, area2 = w1*h1, w2*h2 intersect_w = overlap((x1,x1+w1), (x2,x2+w2)) intersect_h = overlap((y1,y1+h1), (y2,y2+w2)) if intersect_w == w1 and intersect_h == h1 or intersect_w == w2 and intersect_h == h2: return 1. intersect_area = intersect_w*intersect_h iou = intersect_area/(area1 + area2 - intersect_area) return iou def nonmax_suppression(boxes, iou_thresh = IOU_THRESH): """ Removes ovelap bboxes Arguments: boxes -- list of shape (None, 5) iou_thresh -- maximal value of iou when boxes are considered different Each box is [x, y, w, h, prob] Returns: boxes -- list of shape (None, 5) with removed overlapping boxes """ boxes = sorted(boxes, key=lambda x: x[4], reverse=True) for i, current_box in enumerate(boxes): if current_box[4] <= 0: continue for j in range(i+1, len(boxes)): iou = compute_iou(current_box, boxes[j]) if iou > iou_thresh: boxes[j][4] = 0 boxes = [box for box in boxes if box[4] > 0] return boxes def yolo_head(yolo_output): """ Converts a yolo output tensor to separate tensors of coordinates, shapes and probabilities. Arguments: yolo_output -- tensor of shape (batch_size, S, S, BOX, 5) Returns: xy -- tensor of shape (batch_size, S, S, BOX, 2) containing coordinates of centers of found boxes for each anchor in each grid cell wh -- tensor of shape (batch_size, S, S, BOX, 2) containing width and height of found boxes for each anchor in each grid cell prob -- tensor of shape (batch_size, S, S, BOX, 1) containing the probability of presence of boxes for each anchor in each grid cell """ xy = torch.sigmoid(yolo_output[..., 0:2]) anchors_wh = torch.tensor(ANCHORS, device=yolo_output.device).view(1, 1, 1, len(ANCHORS), 2) wh = torch.exp(yolo_output[..., 2:4]) * anchors_wh prob = torch.sigmoid(yolo_output[..., 4:5]) return xy, wh, prob def process_target(target): xy = target[..., 0:2] wh = target[..., 2:4] prob = target[..., 4:5] return xy, wh, prob