import torch from torchvision import transforms from huggingface_hub import hf_hub_download class Vits8Pipeline: def __init__(self): self.device = 'cuda' if torch.cuda.is_available() else 'cpu' self.model = None # Initialized upon loading torchscript self.transform = transforms.ToTensor() @classmethod def from_pretrained(cls, model_path_hf: str = None, filename_hf: str = "weights.pt", local_model_path: str = None): vit = cls() if model_path_hf is not None and filename_hf is not None: vit.model = torch.jit.load(hf_hub_download(model_path_hf, filename=filename_hf), map_location='cpu') vit.model.to(vit.device) vit.model.eval() elif local_model_path is not None: vit.model = torch.jit.load(local_model_path, map_location='cpu') vit.model.to(vit.device) vit.model.eval() return vit def __call__(self, image) -> torch.Tensor: image = image.convert("RGB") img_tensor = self.transform(image).to(self.device).unsqueeze(0) return self.model(img_tensor)[0].detach().cpu()